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Abstract

High-throughput sequencing (HTS) is a modern DNA
sequencing technology used to rapidly read thousands
of genomic fragments from microorganisms given a
sample. The large amount of data produced by this
process makes deep learning, whose performance of-
ten scales with dataset size, a suitable fit for process-
ing HTS samples. While deep learning models have uti-
lized sets of DNA sequences to make informed predic-
tions, to our knowledge, there are no models in the cur-
rent literature capable of generating synthetic HTS sam-
ples, a tool which could enable experimenters to pre-
dict HTS samples given some environmental parame-
ters. Furthermore, the unordered nature of HTS sam-
ples poses a challenge to nearly all deep learning ar-
chitectures because they have an inherent dependence
on input order. To address this gap in the literature,
we introduce DNA Generative Adversarial Set Trans-
former (DNAGAST), the first model capable of generat-
ing synthetic HTS samples. We qualitatively and quanti-
tatively demonstrate DNAGAST’s ability to produce re-
alistic synthetic samples and explore various methods to
mitigate mode-collapse. Additionally, we propose novel
quantitative diversity metrics to measure the effects of
mode-collapse for unstructured set-based data.

Introduction
Exploring and understanding functional roles in microbial
communities is one of the most important research aspects
of microbiology and bioinformatics. Using modern high-
throughput sequencing (HTS) technologies, an experimenter
can profile and analyze a microbiome from a sample by se-
quencing genomic material contained within it in the form of
thousands of short DNA sequences. This allows the experi-
menter to identify what microorganisms are present and de-
termine key factors that drive microbial communities. Cur-
rently, in order to determine what a microbiome would look
like in a given scenario, one would have to actually perform
the experiment. However, generative modeling methods us-
ing deep learning could be used to produce synthetic HTS
data highly resembling what would actually be sequenced in
the experiment, potentially expediting the research process.
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Generative adversarial networks (GANs), one of the most
powerful generative model architectures, have been used to
generate synthetic DNA sequences independently with de-
sired properties (Gupta and Zou [2019]). In a sample con-
text, the ability to generate synthetic HTS samples with de-
sired properties could be used to inform experimenters the
important microbial interactions required to achieve such
properties. Unlike DNA sequences that are structured by
nature (i.e. the order of the base pairs matters), HTS sam-
ples are unstructured in that they are comprised of a set of
DNA sequences with no inherent order. This poses a sig-
nificant challenge to most deep learning methods as nearly
all architectures have an inherent dependence on the input
order. The usage of generative models such as GANs on un-
structured/unordered data in the current literature is scarce
and focuses primarily on 2D and 3D point cloud generation
(Stelzner et al. [2020], Li et al. [2018]).

In this work, we present DNA Generative Adversarial Set
Transformer (DNAGAST): the first generative model capa-
ble of generating synthetic HTS samples. We demonstrate
that DNAGAST is capable of producing synthetic HTS sam-
ples that resemble their real counterparts. We also show that
mode-collapse mitigation methodologies and techniques can
be incorporated to improve sample diversity. Lastly, we
present custom performance measures to quantitatively mea-
sure mode-collapse for unstructured set-based data.

Background
Generative Adversarial Networks
GANs by Goodfellow et al. [2014] are generative deep
learning models that synthesize unique data that neverthe-
less resembles the source training data distribution. A typi-
cal GAN architecture consists of two models: the generator
and the discriminator. The goal of the generator is to learn
some distribution, pg , over the given data, x, allowing it to
map a latent-space vector pz(z) to the ambient-space to pro-
duce samples resembling the training data. The discrimina-
tor then predicts the probability that the given distribution
comes from the data distribution, pdata, or the generated dis-
tribution, pg , via another neural network, D(x). The gen-
erator (G) and discriminator (D) are trained together in a
minimax fashion, where the discriminator aims to maximize
its performance in correct classification, while the genera-
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tor tries to minimize its loss to fool the discriminator. This
yields the adversarial loss function:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)]

+ Ez∼pz(z)[log(1−D(G(z))]
(1)

The primary purpose of GANs and other generative mod-
els in the existing literature is image generation and generat-
ing structured data. They have been shown to be successful
at generating DNA sequences with desired properties (Gupta
and Zou [2019], Hazra et al. [2022]). However, the appli-
cation of GANs for unstructured data is seemingly limited
to low-dimensional geometric point clouds (Stelzner et al.
[2020], Li et al. [2018]). This makes it unclear in the liter-
ature how one would go about generating other domains of
unstructured data such as HTS.

Generative Adversarial Set Transformer
Generative Adversarial Set Transformer (GAST) by Stelzner
et al. [2020] is a GAN architecture designed for unstructured
data generation. It is built using components from the Set
Transformer (ST) framework by Lee et al. [2019] which take
advantage of the permutation-equivariant processing proper-
ties of the original transformer architecture by Vaswani et al.
[2017]. While GAST’s application was limited to 2D poly-
gon and point cloud generation, the use of transformers is
highly appealing as they are not only the state-of-the-art ar-
chitecture across nearly every domain, but attention scores
within the multi-head attention mechanism can be mined for
explainable predictions (Dosovitskiy et al. [2021]).

Set Transformer Components ST defines the multi-head
attention block (MAB) in terms of the standard transformer
architecture without position encodings:

MAB(X,Y ) = LN(H + FFN(H)),

where H = LN(X + MHA(X,Y, Y ))
(2)

where X,Y ∈ Rn×d are each a set of d-dimensional vec-
tors, MHA is multi-head scaled dot-product attention as de-
fined by Vaswani et al. [2017], FFN is any row-wise feed-
forward network, and LN is layer normalization as proposed
by Ba et al. [2016]. In order to process larger set sizes with
linear time complexity, ST proposes the induced set atten-
tion block (ISAB) which utilizes a set of m inducing points,
I ∈ Rm×d, where m is a hyperparameter specified by the
experimenter. These inducing points can either be learned or
predicted. The ISAB is defined as:

ISABm(X) = MAB(X,H) ∈ Rn×d

where H = MAB(I,X) ∈ Rm×d
(3)

Finally, to expressively pool a set, GAST provides a modi-
fication of ST’s pooling by multi-head attention component
as shown below:

ISEm(X) =

m∑
i=1

MAB(Ii, X) ∈ Rm×d (4)

where I ∈ Rm×d is a set of m inducing points.

ISAB +

(a) The generator Set Transformer block

ISE

ISAB +

(b) The discriminator Set Transformer block

Figure 1: The Set Transformer blocks for GAST.

Mitigating Mode Collapse
While GANs are capable of producing realistic results, they
are notoriously difficult to train (Salimans et al. [2016],Sri-
vastava et al. [2017],Arjovsky et al. [2017]. The most com-
mon issue to arise from training GANs is mode collapse
where the model learns only a portion of the true data distri-
bution, limiting the diversity of generated data. Though the
solution to the issue of mode-collapse is an ongoing research
problem, there are many techniques in the literature that can
assist in its prevention. In this work, we focus on two promi-
nent remedies, neither of which has to our knowledge yet
been examined in the context of unstructured GAN models.

WGAN-GP Wasserstein GAN by Arjovsky et al. [2017]
combined with gradient penalty (WGAN-GP) by Gulrajani
et al. [2017] has been shown to significantly reduce mode-
collapse and improve generated sample quality by replac-
ing the discriminator with a critic network with a modified
training objective to maximize confusion. The WGAN-GP
objective is shown in the equation below.

min
G

max
D

V (D,G) = Ez∼pz [D(G(z))]

− Ex∼pdata [D(x)]

+ λEx̂∼px̂
[(∥∇xD(x̂)∥2 − 1)2]

(5)

where λ is a fixed hyperparameter and px̂ is a uniformly-
sampled set of interpolated data points acquired by linearly-
interpolating uniformly between pairs of real and generated
sample points.

VEEGAN VEEGAN by Srivastava et al. [2017] is a vari-
ant of the GAN architecture designed specifically to mitigate
mode-collapse. This architecture introduces a ‘reconstruc-
tor’ component that aims to invert the generator, mapping
data from the ambient space back to latent-space representa-
tions, forming an autoencoder with the generator and recon-
structor. The loss function for this autoencoder is defined as:

Lrecon =
1

N

N∑
i=1

d(zi, z
′
i) (6)
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Figure 2: The generator architecture for DNAGAST.

where z ∼ pz , z′ is the reconstructed version of z given its
ambient-space mapping, N is the number of components in
z/z′, and d is any loss function such as mean-squared error.
The discriminator is also modified to accept both the latent-
space and ambient-space data representations (real and gen-
erated) as input. By enforcing the reconstructor’s output dis-
tribution to be Gaussian with respect to both the real and
generated data, the log-likelihood of the reconstructor’s out-
put can be computed and added to the generator’s loss func-
tion. By doing so, the generator is better encouraged to gen-
erate diverse data across the whole range of the true data
distribution.

Methods
High-throughput Sequencing Data
For this work, we utilize 210 raw high-throughput sequenc-
ing runs from soil samples obtained as part of a grassland
restoration study by Barber et al. [2023]. Each run is com-
prised of sequences of 150 bp in length. This study took
place at Nachusa Grasslands in northern Illinois as part of
an ecosystem restoration project. Soil samples were col-
lected from 13 restored prairies, 2 remnant prairies, and
two agricultural fields rotated between corn and soy. Re-
stored prairies were former agricultural fields planted with
diverse seed mixes between 1987 and 2013, and remnants
were prairies that were never converted to rowcrop agricul-
ture. See Barber et al. [2023] for more details on sites and
sampling.

DNA Sequence-level Embeddings
In order to embed individual DNA sequences, we employ a
modified version of DNABERT by Ji et al. [2021], the cur-
rent state-of-the-art model for DNA sequence embeddings
as shown by Wang et al. [2023]. We simplify the DNABERT
architecture by retaining only the special class and mask
tokens as we are only interested in sequence embedding
and reconstruction. Next, we modify the transformer blocks
to use the pre-LN technique by Xiong et al. [2020] for
more stable training. Lastly, the original DNABERT archi-
tecture employs absolute-position encodings, whereas we
utilize relative position encodings as described by Shaw
et al. [2018]. We hypothesize that using relative-position
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Figure 3: The primary discriminator architectures for DNA-
GAST.

encodings over absolute-position encodings result in higher
quality sequence embeddings as the distance between nu-
cleotides is more meaningful than their global positions in
a given sequence. We pre-trained DNABERT on our high-
throughput sequencing dataset following the same proce-
dure outlined in the original DNABERT manuscript using
3-mer tokens and 8D embeddings. Each sequence is aug-
mented by randomly trimming either end so that the final
sequence length is 150 bp, and unknown/ambiguous bases
are uniformly assigned a random concrete nucleotide base.

DNAGAST
We now introduce DNAGAST: the first generative model
capable of synthesizing HTS samples. The goal of the
DNAGAST generator is to produce subsamples of n se-
quences that effectively capture the taxonomy distribution
of corresponding whole HTS samples from the training
data. As mentioned previously, GAST and other GAN ar-
chitectures that work with unstructured data are limited to
low-dimensional point clouds. We exploit this fact by in-
stead only requiring our generator to produce latent-space
DNA sequence embeddings which is effectively a high-
dimensional point cloud. These sequence embeddings can
then be decoded later using any DNA sequence decoder
model.

When designing this model, we utilize both the Set Trans-
former framework and the GAST framework as they have
laid out most of the initial groundwork. As per the name,
our models are highly-inspired by and build on top of the
GAST framework; however, there are several modifications
to the architectures and training regimes that we employ.
First, as we are interested in generating specific samples,
we modify the model to create an AC-GAN-like architec-
ture and training regime. Next, we continue to employ the
pre-LN technique in each of the transformer blocks follow-
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variant. Each point represents a subsample of 1,000 sequences from a corresponding sample. The Xs represent subsamples
from actual data, and the circles represent synthetic subsamples from our models. The distance between two points indicates
their similarity where points close together are more similar than points farther apart.

ing Xiong et al. [2020] for more stable training. We remove
the spectral-normalization (SN) methods by Miyato et al.
[2018] that the GAST framework implements as we found
SN to negatively impact the quality of the generated sam-
ples. Lastly, we implement novel GAST architectures based
on WGAN-GP and VEEGAN, as well as the combination of
both, in order to combat mode collapse.

The Generator The generator architecture as portrayed
in Figure 2. is very similar to the generator in the original
GAST framework. To generate a set, it first produces a ran-
dom initial set in the same manner as the original GAST gen-
erator, and selects n elements uniformly at random without
replacement. This random set is then passed through a series
of residually-connected ISABs where the set is conditioned
on inducing points predicted by some feature vector. This
feature vector is predicted using the provided latent-space
vector. In order to implement conditional generation to pro-
duce specific sample types, our generator accepts a ‘Sample
ID’ as additional input. These sample IDs can be provided
in the form of one-hot encodings; however, we instead asso-
ciate a learned embedding with each sample. The sample ID
embedding and latent-space vectors are then concatenated
together and passed through a feed-forward network to pre-
dict the feature vector. The output of the ISAB stack is then
fed through a final feed-forward network where it is pro-
jected down to the sequence-level dimensionality, yielding
the synthetic set of DNA sequence embeddings.

We use 64-dimensional vectors for both the sample ID
and latent-space vectors. The initial set is randomly sam-
pled in a high dimensional latent-space of 256 dimensions
and fed through a block of 4 residually-connected ISABs.
The ISABs also use 256-dimensional projections of the set
elements when performing multi-head attention with 4 at-
tention heads and 48 predicted inducing points. Each feed-
forward network consists of small, two layer neural net-
works, and the ReLU activation function is employed for
their inner layers. As mentioned in the background, unlike

the original GAST architecture, we do not include the SN
layers as we found them to negatively impact our models’
performances.

The Discriminator Like the generator, our discriminator
model for DNAGAST is also similar to the original GAST
discriminator, continuing to employ the modifications as de-
scribed previously for the generator. The standard discrim-
inator is shown in Figure 3. It accepts a set of DNA se-
quence embeddings corresponding to a subsample as input
and passes it through GAST’s pooling blocks which produce
a concatenated list of encoding vectors. These vectors are
linearly-projected down to produce the probability distribu-
tion of the provided sample’s label. The output layer consists
of a single value corresponding to each sample label, along
with an additional ‘fake’ class label. The discriminator then
attempts to classify each sample as one of the real sample
labels provided, otherwise it is simply considered fake.

We reuse many of the same hyperparameters from the
generator for the discriminator. The set pooling blocks are
comprised of 3 ISEs/ISABs, each using 256-dimensional
projections, 4 attention heads and 48 learned inducing
points. The ReLU activation function is also employed for
intermediate layers. We tested SN solely on the discrimina-
tor during development as proposed by Miyato et al. [2018],
however, we still observed inferior performance.

Mode-collapse Mitigating Methods During the develop-
ment of these models, mode-collapse was a frequent issue
that we encountered, making it difficult for the generator to
produce diverse subsamples. In our efforts to resolve these
issues, we investigated and combined multiple techniques
that have been shown to prevent it. Specifically, we imple-
mented both WGAN-GP and VEEGAN variations of DNA-
GAST, as well as the combination of the two methods which,
to our knowledge, has not been done in the current literature.

We first look at the implementation of WGAN-GP, as it
is rather simple to incorporate into our current DNAGAST



Model Arithmetic Geometric Harmonic

DNAGAST 2.964 2.961 2.959
DNAGAST (WGAN-GP) 4.836 4.832 4.828
DNAGAST (VEEGAN) 3.040 3.037 3.035
DNAGAST (WGAN-GP + VEEGAN) 3.494 3.487 3.481

Table 1: The median of the computed mean real-to-fake chamfer distances across 10 independent evaluations.

model. As mentioned previously, WGAN-GP has been
demonstrated to be generally superior to typical GAN ar-
chitectures (Arjovsky et al. [2017], Gulrajani et al. [2017]).
However, due to the nature of the critic’s output, it is not im-
mediately obvious how one can incorporate it with an AC-
GAN like architecture where the discriminator produces a
probability distribution of classes. In our model as shown
in Figure 3, we give the critic two outputs: the critic score,
and the predicted class probability distribution. The loss of
this distribution can then be computed either by targeting the
correct, real label, or target a 50/50 split between the real la-
bel and the fake label. While the 50/50 split is more inline
with the WGAN-GP idea, we did not find any noticeable
difference between the two methods in early testing, As a
result, we simply compute the categorical cross-entropy of
the correct label.

Alongside WGAN-GP, we also chose to implement a
VEEGAN-based variant of the DNAGAST model. As de-
scribed earlier, this necessitates a modification to the dis-
criminator to include an additional input to represent the
latent-space vector representation of the provided sample.
This modified architecture is shown in Figure 3. We incorpo-
rate this into the discriminator’s architecture by concatenat-
ing it with the already-concatenated list of encoding vectors
before feeding it through the final feed-forward network. To
create the reconstructor network, we use a nearly identical
architecture to that of our original discriminator, only replac-
ing the final linear projection with a feed-forward network
to predict the latent-space vector of the provided sample.
During training, we compute the loss of the reconstructor in
much of the same manner as a typical autoencoder by com-
puting the log-likelihood of the resulting latent-space vector
as described by the original implementation from Srivastava
et al. [2017]. The reconstructor is then trained in an autoen-
coder fashion with the generator, and the reconstructor’s loss
is added to the generator’s loss.

Lastly, we design and implement a fourth architecture
combining DNAGAST, WGAN-GP, and VEEGAN into a
single model. Since both WGAN-GP and VEEGAN have
been demonstrated to significantly reduce mode-collapse,
we use this model to determine whether or not they are
compatible with each other and capable of preventing mode-
collapse even further.

Training
We train each of the GANs with slightly-modified versions
of their corresponding defined training regimes. As we are
using conditional GANs, we replace (include in the WGAN-
based critics) the original discriminator’s output with a cat-

egorical cross-entropy loss of the predicted label probabil-
ity distribution. For each model, all components employ the
Adam optimizer with a static learning rate of 0.0001. We
then train each model for roughly 50,000 steps each.

In terms of the provided/generated data, a batch size of
16 subsamples is used, where each subsample consists of
1,000 sequences. Subsamples from the real data distribution
are generated randomly and embedded using DNABERT
on-the-fly during training. As two of our samples were too
small, we generate subsamples uniformly from 208 different
samples. A subsample is constructed by uniformly select-
ing 1,000 sequences at random without replacement from a
particular sample. The individual sequences may be slightly
longer than our desired 150-nucleotide length. When this oc-
curs, the sequences are augmented by randomly truncating
one or both sides to trim them down to 150 nucleotides.

Evaluation
Employing traditional sample comparison metrics would re-
quire reconstructing the DNA sequences from the embed-
dings and performing taxonomic analysis methods. In this
work, we instead opt to make comparisons using the latent-
space DNA sequence embeddings themselves. In order to
make quantitative comparisons between samples then, we
must utilize permutation-invariant metrics. For this work, we
use Chamfer distance as shown in the formula below:

dCD(A,B) =
∑
a∈A

min
b∈B

∥a− b∥+
∑
b∈B

min
a∈A

∥b− a∥ (7)

where A and B are distinct sets (i.e. sets of DNA sequence
embeddings). It is worth noting that we use L1-norm to com-
pute the distances between two vectors as evidence from Ag-
garwal et al. [2001] suggests that Manhattan distance can be
more meaningful for high-dimensional data.

In order to provide a quantitative measure of mode col-
lapse, we propose custom performance measures: intra-
cluster diversity ratio and inter-cluster diversity ratio. Intra-
cluster diversity is measured by computing the mean dis-
tance between all subsamples drawn from a particular sam-
ple which pertains to the intra-mode variance. Inter-cluster
diversity is measured by computing the mean distance be-
tween all subsamples regardless of the originating sample,
pertaining to the the inter-mode (co)variance. By computing
these metrics for the real data and synthetic data indepen-
dently, the real/synthetic ratio can be computed to obtain a
quantitative diversity measure.

The source code for this work is publicly available on
Github (https://github.com/DLii-Research/
dnagast).

https://github.com/DLii-Research/dnagast
https://github.com/DLii-Research/dnagast


Intra-cluster Diversity Inter- cluster Diversity
Model Arithmetic Geometric Harmonic Arithmetic Geometric Harmonic

DNAGAST 1.865 1.909 1.963 1.084 1.158 1.318
DNAGAST (WGAN-GP) 1.263 1.284 1.306 1.085 1.028 1.013
DNAGAST (VEEGAN) 1.516 1.535 1.551 1.040 1.097 1.198
DNAGAST (WGAN-GP + VEEGAN) 2.285 2.314 2.340 1.028 1.223 1.560

Table 2: The medians of the real/fake ratios for intra-cluster and inter-cluster diversities computing using arithmetic, geometric,
and harmonic means across 10 independent evaluations.

Results
We first examine our generated subsamples by making qual-
itative comparisons using 2D MDS projections of the sub-
sample Chamfer distances in Figure 4, where similarity is
proportional to distance. Each point in the MDS plots repre-
sents a single subsample cluster of 1,000 sequences drawn
from its corresponding sample. We find that all four models
are able to learn the different modes of the data and produce
synthetic samples resembling the real counterparts.

In order to obtain a quantitative measure on the sample
quality, we compute the chamfer distance between real and
synthetic subsamples for each of the 5 samples. For each
sample, we obtain 10 real subsamples and 10 synthetic sub-
samples, compare all possible real-synthetic pairs, and then
compute the arithmetic, geometric, and harmonic means of
the resulting distances. Repeating this process across 10 in-
dependent evaluations, the median for each mean is obtained
and shown in Table 1. We find that the standard DNA-
GAST implementation achieves the best result for this met-
ric, with the VEEGAN variant following closely. The sam-
ples produced by the WGAN-GP variants were of signifi-
cantly worse quality compared to the non-WGAN-GP vari-
ants.

We also evaluate subsample cluster diversity via intra-
cluster and inter-cluster comparisons. Using these measure-
ments, we can determine if any of our models are suffer-
ing from effects of mode-collapse. Starting with intra-cluster
comparisons (i.e. subsamples compared only to subsamples
that correspond to the same whole sample), we compute
the intra-cluster diversity ratio across 10 independent eval-
uations and plot the median using arithmetic, geometric,
and harmonic means in Table 2. We find that DNAGAST
(WGAN-GP) produces significantly more diverse subsam-
ples than the other architectures. We find that both the
WGAN-GP and VEEGAN variants generally produce sig-
nificantly more diverse subsamples than the original DNA-
GAST or the combined WGAN-GP + VEEGAN models
as their ratios are closer to 1.0. While the WGAN-GP and
VEEGAN variants are superior to DNAGAST in terms of
sample diversity, it is surprising to find that the combination
of the WGAN-GP and VEEGAN results in a significantly
worse model. While further investigation is required to de-
termine the exact cause for this unexpected behavior, this
could be due to some incompatability between the WGAN-
GP and VEEGAN architectures. Due to the chaotic nature of
GANs, it could also be be that the combined WGAN-GP +
VEEGAN variant requires significantly more training time.

Lastly, we analyze the inter-cluster diversity by com-
paring the ratio of real-to-real and fake-to-fake subsample
distances across samples. We again perform 10 different
comparisons using the arithmetic, geometric, and harmonic
means of the chamfer distances for each model and list the
values in Table 2. As with the intra-cluster diversity results,
we find that the WGAN-GP and VEEGAN variants are both
superior in terms of inter-cluster diversity compared to the
standard DNAGAST model, and, while still successful, the
combined model unexpectedly suffers the most.

Discussion
In this paper, we presented the first generative adversarial
networks capable of synthesizing subsamples of unstruc-
tured HTS samples. Building off of the Set Transformer and
Generative Adversarial Set Transformer frameworks, we de-
velop four different models by incorporating modern GAN
architectures and training techniques. While all four mod-
els learned to generate reasonably similar subsamples as
evaluated using Chamfer distances, we found that the stan-
dard DNAGAST and VEEGAN models performed similarly
in producing the highest quality subsamples. However, the
intra/inter-cluster subsample diversity of the standard DNA-
GAST variant was significantly worse. It was found that the
WGAN-GP variant of DNAGAST produced the most di-
verse subsamples, closely followed by the VEEGAN vari-
ant. Considering the trade-off of high subsample quality and
subsample diversity, we believe that the VEEGAN variant
of DNAGAST is the superior version.

While the integration of WGAN-GP/VEEGAN-like ar-
chitectures into the DNAGAST models successfully im-
proved the subsample diversity as expected, the combination
of the methods resulted in a significantly worse perform-
ing model compared to the other three. As we are unaware
of any incompatibility between the architectures, this issue
could simply be an outlier. It is possible that by retraining
with different initial weights, we may obtain an improved
model. We plan to investigate this more in future work.

Though we believe this research lays the groundwork
for developing powerful HTS generation models, there are
still many questions that we wish to answer. First, GANs
can map different characteristics in different regions of the
latent-space. By creating general latent-space transforma-
tions, it may be possible to predict the ecological impacts of
adding/removing certain microorganisms. These predictions
can also be experimentally verified and allow us to better
understand the driving factors of microbial communities.
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