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ABSTRACT
Neuroscience provides a rich source of inspiration for new types
of algorithms and architectures to employ when building AI and
the resulting biologically-plausible approaches that provide formal,
testable models of brain function. The working memory toolkit
(WMtk), was developed to assist the integration of an artificial
neural network (ANN)-based computational neuroscience model
of working memory into reinforcement learning (RL) agents, miti-
gating the details of ANN design and providing a simple symbolic
encoding interface. While the WMtk allows RL agents to perform
well in partially-observable domains, it requires prefiltering of sen-
sory information by the programmer: a task often delegated to
dimensional attention mechanisms in other cognitive architectures.
To fill this gap, we develop and test a biologically-plausible dimen-
sional attention filter for theWMtk and validate model performance
using a partially-observable 1D maze task. We show that the atten-
tion filter improves learning behavior in two ways by: 1) speeding
up learning in the short-term, early in training and 2) developing
emergent alternative strategies which optimize performance over
the long-term.
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1 INTRODUCTION
The fields of neuroscience and artificial intelligence (AI) have a
long and intertwined history. Since the age of computers, works
on AI have been inextricably interlinked with neuroscience and
psychology, with collaborations between these disciplines proving
highly productive for early pioneers [2, 5, 6, 15]. Particularly in the
area of artificial neural networks (ANNs), the benefits of develop-
ing ANNs based on examining biological cognition and its neural
implementation have been substantial. Neuroscience provides a
rich source of inspiration for new types of algorithms and archi-
tectures to employ when building ANNs. Likewise, these ANNs
can be viewed as formal, testable hypotheses of brain function, and
neuroscientific experiments can provide validation or refutation of
such ANNs.

There is considerable evidence that the brain uses working mem-
ory (WM) which plays an important role in a wide variety of high-
order cognitive tasks including learning new information, following
directions, taking notes, reasoning, and problem solving [3]. WM
operates by maintaining a small amount of task-essential informa-
tion which focuses attention, limits the search space for perceptual
systems, and/or helps avoid the out-of-sight/out-of-mind problem
and being obdurate towards irrelevant events [1, 16]. WM in hu-
mans and animals is hypothesized to subsist in the interaction of
two major neural components: the prefrontal cortex (PFC) and
mesolimbic dopamine system (MDS). The PFC functions as a fixed
storage for task-related information while the MDS evaluates the
efficacy of such information. Biologically-based ANNs forWM have
been developed based on MDS in the mesolimbic pathway from
electrophysiological, neuroimaging, and neuropsychological stud-
ies [7, 10]. Additionally, reinforcement learning is another area that
links ANNs and neuroscience together. One of the breakthroughs
in reinforcement learning is temporal difference learning (TD), the
goal of which is for the learning system (the ‘agent’) to be able to
estimate the values of different states or situations in terms of fu-
ture rewards or punishments. Electrophysiological studies of MDS
also suggested that the firing rates of cells in the MDS encodes for
changes in expected future rewards [9, 13].

The working memory toolkit (WMtk) was developed to assist
the integration of ANN-based WM into reinforcement leaning (RL)
agents to allow the solution of partially-observable RL problems
by attenuating the details of ANN design and providing a simple
symbolic encoding interface [4, 12]. However, the current WMtk
requires the user (programmer) to guide it in a general way as to
what kinds of information are relevant for the task at hand (can-
didates for storage in WM). This is problematic as the WMtk was
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designed to imitate biological WM which appears to utilize self-
sufficient mechanisms to solve this problem automatically in other
learning domains. For example, ANN-based category learning mod-
els often employ dimensional attention mechanisms to filter out
irrelevant or distracting information which leads to faster learning
similar to human performance [8, 11]. Our aim is to integrate a
similar biologically-plausible dimensional attention filter into the
WMtk framework in order to autonomously perform tasks in the
face of distracting stimuli. We test the performance of our aug-
mented model using a partially-observable 1D maze task to explore
the impact of dimensional attention on learning speed and agent
behavior.

2 METHODS
The WMtk traditionally utilizes the standard TD-learning [14]
method for learning the value function encoded using a single
layer ANN. We replaced the ANN with a value function look-up
table for all of our experiments to ensure that any observed ad-
vantages/disadvantages for our model were not due to function
approximation errors. This allows us to encode, manipulate and
store information similar to how the WMtk operates, namely using
values encoded from location-signal-memory triplets (𝑉 (𝑥, 𝑠,𝑚))
instead of state alone (𝑉 (𝑠)). Below, we develop a biologically-
plausible attention filter around our WMtk and experiment with
the results of four possible filter conditions (static filtering), and
also at a range of thresholds (dynamic filtering), in order to investi-
gate on-demand filter switching. During this phase, we have our
WMtk preform basic memory retrieval tasks to help evaluate the
performances of each set of thresholds and explore the sensitivity
of the initial threshold parameter settings.

Figure 1: Representation of the 1D Maze

We created a reinforcement learning agent which utilized TD
learning to solve a 1D maze task consisting of 10 independent states
as seen in Figure 1. Each state has two immediately accessible
neighbors to the left and right, such state 5 has access to its left
neighbor, state 4, and right neighbor, state 6.The maze is periodic
such that state 10 is the right neighbor of state 1, and 1 is the
left neighbor of state 10. For each color signal, there is a 1D maze
with its own reward state. The green signal indicates a reward is
in state 5 and the red signal indicates a reward located in state 1.
The result is two conflicting, partially-observable policies as only
one of the color signals is used for each episode of the 1D maze
task. Internal to the agent, we used a 3D array that could hold the
value representation of all the possible state-memory-signal triplets
that the agent could potentially have (dimensional and memory

combination) and a 2D array to represent the environment and
where the rewards are located. The table lookup system is being
used, due to prior issues that risen when the attention filter was
used with ANNs. This is to determine whether the current attention
filter is the cause of the issues.

TD learning is primarily concerned with learning the value func-
tion (discounted future rewards), and the agent is implemented
through a series of functions under a for-loop imitating the 3 main
function in the original WMtk: Initialize Episode, Step, and Absorb
Reward. First, an episode resets all episode-specific variables and
clears the WM. To make the task partially observable, the color
signal is provided only on the first step of each episode which was
correlated with the location of the goal for that episode. This is
done to create good test of WM performance as the agent also has
to determine whether or not the information is relevant for the
task. The color signal (and therefore the goal) is selected randomly
and shown to the agent along with its location in the maze. At this
step, the agent is either rewarded if it happens to be on the reward
state or has to choose between remembering the color signal, its
location, or neither. The agent chooses based on which option has
the highest value. After this, the agent calculates the value of its
current state and uses those values along with those stored from the
previous state to update the WM value array using the TD learning
equation. The agent stores the current state value for use in the
next step of the episode. Finally, if the agent lands on the reward
location, the TD error is computed using the previous state value
as well as the final state value (absorbing the reward). Typically, a
scalar reward of zero is provided throughout all steps of the task.
On the final step, a reward value of 1 is provided, thus indicating
that the agent successfully completes the task. When a new episode
begins, these functions are called again, in the same order.

In addition to the base model above, an dimensional attention
filter is added to the agent. The attention filter is composed of
two adjustable parameters representing the dimensions of features
that could be filtered out. In the case of the task above, the two
dimensions that might be filtered out are the signal color and the
agent location. The dimensional features that are currently being
filtered is demonstrated with the value of a parameter being 0
or 1 for on and off, respectively. At the start of an episode, the
parameters are observed to determine if the perceptual information
can be taking in by the working memory. If the parameter holds 1
(filter is off), the WM is allowed to consider the feature information
relating to the corresponding dimension. Additionally, the filters
have a threshold function which checks on when a dynamically
update TD error accumulator variable crosses from positive to
negative or vice-versa. If an accumulator is below 0, it will turn the
boolean parameter for the corresponding dimension to 0 (off). The
accumulator value is calculated using the TD delta equation:

𝛿𝑡 = (𝑟 (𝑥, 𝑠) + 𝛾𝑉 (𝑥, 𝑠,𝑚)𝑡+1) −𝑉 ((𝑥, 𝑠,𝑚)𝑡 (1)

where 𝛿𝑡 is the delta delivered on each time step to predict the
change in expected future reward, given features of the current
situation. The 𝛿𝑡 can be added or subtracted with each accumula-
tor’s current value depending on their corresponding filter’s on/off
setting, respectively. To determine reasonable initial settings for the
accumulator values, we calculated their values during simulations
with the two filters statically set to all four on/off combinations.
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This provided good estimated starting points, and also provided
guidance on the range of initial accumulator settings to use for the
sensitivity study below.

The learning parameters for all tasks are set to these values:
learning rate parameter, 𝛼=0.03; future reward discounting factor,
𝛾=0.9; 𝜖-soft random working memory selection probability =0.01;
number of working memory slots =1;

3 RESULTS
When testing the dimensional attention filter with the 1D maze
task, we are looking for two criteria for success as mentioned in
the introduction: 1) how the agent reacts to the maze for each filter
condition (static attention) and 2) how does the agent perform for
a wide range of initial accumulator values (dynamic attention).

Figure 2: The Average Time Steps of Each Filter Conditions

During the 30000 learning trials, we recorded the average steps
per 100 episodes (sliding window) for each of the four filtering
conditions. The results are shown in Table 1 and Figure 2. Overall
for the static attention models, when attention to both color and
state are turned off, the agent performed very poorly (large num-
bers of steps). Given state attention only (color attention turned

Table 1: Average Number of Steps in theMaze for Both Static
Filtering and Dynamic Filtering

Static Dynamic
Color State Early Late Early Late
On On 2.63 1.66 2.57 1.67
On Off 2.01 1.94 3.12 2.04
Off On 4.52 3.52 28.59 3.36
Off Off 40.66 43.95 40.91 44.60

off), the performance is better but not as good as when only using
color attention (state attention turned off). When attention to both
the state and color dimensions is turned on, there is a only slight
penalty early in learning (compared to color-only attention) but
that loss is made up for in better performance later in learning.
However, the dynamic model shows the best performance when
starting with both dimensions active, suggesting that it quickly
turns off state attention to speed learning early-on, and then adds
it back later to achieve better performance later in learning. This
phenomenon is best observed in Figure 2. As anticipated, condi-
tion No C&S has dramatically increased in the number of steps
to approximately 40 steps before reaching the 5000 episodes and
remaining between the range of 40 and 50. This may be due to the
attention filter activation for both features, meaning that the WM is
not taking in any information from the environment. Thus, for each
episode, the agent is "taking a shot in the dark" by making random
decisions on its next step. Condition S, filtering out color, allows
the agent to learn using only location and did remarkably well,
with the agent being able to solve the task under approximately 4
steps per episode. Notably, there is a inverse relationship between
the condition CS, both color and state are taken in by agent, and
condition C, where only the state dimension (distractor) is filter
out. CS displayed higher performance than C early in training, but
the average number of steps started to dramatically decline later
in learning. This indicates that while removing distractions helps
the agent learn quickly in the beginning, it doesn’t help the agent
perform better in the long run. Along with the result of the filtering
condition, we collected the accumulator value that is produced by
each condition to help guide our later sensitivity study.

Alongwith the result of the four filtering conditions, we observed
the accumulator values that were produced by each condition. As
shown in Table 1, we observe the average steps for the first 10,000
episodes (Early learning) and the last 10,000 episodes (Late learn-
ing) from the filtering conditions when the agent performs the task
with both static filtering and dynamic filtering. With the result
of the dynamic attention filter, we evaluate the values of the dy-
namic attention filter to determine the condition in the thresholds
gradient.

Figure 3 shows the average steps the agent took during early
learning and late learning under the thresholds. The threshold range
from -1500 to 1500 at 50 steps for each feature. In the threshold
gradient, we can observed the values of the average steps for the
early and late learning of the thresholds and compare it to the
values observed from the table. This demonstrates how the value
of the thresholds heavily affects how the filter changes from one
condition to another. The on/on condition can be seen by setting
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Figure 3: The Value of the Average Steps During Early Learn-
ing and Late Learning

the color threshold at regular intervals from the range -1500 to -300
and state threshold from -1500 to 700 with a few exception. The
off/off condition is shown with color threshold set from range 200
to 1500 and state threshold set to -1500 to 0. The on/off condition
appears to be more scarce with color threshold ranging from -1500
to -1100 and state threshold from 750 to 1500. However, this applies
to the results in dynamic filtering: the off/on condition has color
threshold ranging from 600 to 1500 and state threshold 50 to 1500.

The performance of the agent when completing the task is
greatly affected by the filtering condition. The filtering of state
locations demonstrates a benefit of quicker early learning for the
first episodes. However, learning develops better in the long run if
the filter was left off. This in turn give an idea of what the average
time steps are for each condition. This information gave us a lead to
evaluate initial accumulator value for similar values when both di-
mension are active. This resulted with threshold ranges that can be
used to augment the attention filter. Although, some thresholds in
these ranges do not produce the results that can easily be predicted.
Such as the values of the state threshold ranging -400 to 800, where
a mixture of the values conditioned to the filter switches while the
majority equal to values as lower than 2 or extremely high.

In the end, the results here suggest similar learning benefits to
dimensional attention shown in the category learning literature:
that dimensional attention helps focus attention on relevant stimu-
lus dimensions and ignore distracting dimensions in order to speed
learning. The same kind of learning speedups were observed by
filtering out the irrelevant state dimension from the candidates
for working memory storage early in learning. However, later in
learning, the dynamic attention mechanisms presented here turn
off this filtering at some point. This is done to improve the overall
asymptotic performance later in learning since the state locations
can be used in a counter-intuitive manner to perform the tasks
more optimally. In particular, if a random, exploratory move by
the 𝜖-soft policy resulted in randomly forgetting the color signal
for the current episode, a reasonable backup strategy consists in
visiting the closest of the two goals and then remembering that this
state was already visited to allow the agent to learn to return as
quickly as possible to the other goal. This strategy of remember-
ing the location where the goal was not present results in better
asymptotic performance on the tasks.

4 DISCUSSION
Our results show that filtering aids the WM in determining relevant
information to store for the task and provides an appropriate re-
placement to manual prefiltering by adapting dimensional attention
during learning. This dynamic filtering illustrates the utility of WM
as an attention focusing mechanism. It was found that the agent had
created "alternative strategies" when it chose to recall its location.
After a number of episodes, the agent would use its location as a
way of determining where the reward’s location is. For example,
if the agent was preforming a red task and chose to remember it’s
current location it could use the fact that it can’t remember the goal
state’s location in a trial and error strategy. From there, it can build
a map from the values it created and use it to reach reward state.
The average times steps during the CS condition suggests that the
alternative strategies requires a sufficient amount of episodes in
order to show the benefits of quicker learning over a in the long run.
Notably, the 1D maze task (with state distractors) was previously
beyond the capabilities of the toolkit. In the original WMTK, the
1D maze task was an arduous task when location was added for the
WM to consider for retention for the agent. Yet, the tabular version
was able to not only solve the task, but used the new information to
its advantage as an alternative strategy to be used if the WM forgot
the color. This may in-part be due to the tabular version being more
precise when it calculates the value of each state location. There
were times where the WM made a decision when two options had
values that were only different at the ten-thousandth place. This
compare to the ANN ’s approximate nature gave the tabular version
an advantage.

Autonomous dimensional attention learning allowed for new
complex concepts to emerge in problem solving tasks. Thus, the
WM can work on complex tasks with an approach similar to its
biological counterpart. Additionally, the user no longer needs back-
ground knowledge on how to construct sparse, distributed, con-
junctive codes to filter out information. The user also does not need
to rewrite filter functions when extending the maze spaces or using
different numbers of dimensions. The filtering condition results also
buttressed the dynamic filter since it can switch between different
conditions depending on the TD error alone. The filter, in dynamic
form, shows promise in its ability to autonomously change between
the filter conditions. By changing the threshold to match the condi-
tion ranges, it can gain both of the benefits of quick learning and
optimal performance from the filter conditions. This can make for
further research on how useful this ability may be when testing on
WM-related tasks.

The development of the dimensional attention filter has opened
up several new avenues for future work. However, the filter has its
own limitations. It was built specifically for the 1D maze task. If any
expansion on complexity of the task were to occur, it would require
additional changes to take up these possibilities. It is also worth
trying the attention filter on the delayed saccade task, where the
attention filter could provide a different strategy for completing the
task. Additionally, tasks that require long memorizing sequences
of information quickly would help develop our understanding of
the limitations of the WM and test out how dimensional attention
filtering might react in such a task.
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