Hybrid Spectral/Subspace Clustering of Molecular Dynamics
Simulations

Ivan Syzonenko
Center for Computational Science
Middle Tennessee State University
Murfreesboro, Tennessee
is2k@mtmail. mtsu.edu

ABSTRACT

Data clustering approaches are widely used in many domains includ-
ing molecular dynamics (MD) simulation. Modern applications of
clustering for MD simulation data must be capable of assessing both
natively folded and disordered proteins. We compare the perfor-
mance of the spectral clustering with a more recent subspace cluster-
ing approach, and a newly proposed "hybrid’ clustering algorithm
which seeks to combine the useful characteristics of both methods
on MD data from both protein classes. Results are analysed in terms
of accuracy, stability, data density, and other properties. We con-
clude with what combinations of algorithms/improvements/data
density will provide results that are either more accurate or more
stable. We find that subspace clustering produces better results than
standard spectral clustering, especially for disordered proteins and
regardless of input data density or choice of affinity scaling. Addi-
tionally, our hybrid approach improves subspace results in most
cases and entropic affinity scaling leads to a better performance of
both spectral clustering and our hybrid approach.

KEYWORDS

molecular dynamics, spectral clustering, subspace clustering, disor-
dered proteins, entropic affinities, clustering

ACM Reference Format:

Ivan Syzonenko and Joshua L. Phillips. 2018. Hybrid Spectral/Subspace
Clustering of Molecular Dynamics Simulations. In ACM-BCB’18: 9th ACM
International Conference on Bioinformatics, Computational Biology and Health
Informatics, August 29-September 1, 2018, Washington, DC, USA. ACM, New
York, NY, USA, 6 pages. https://doi.org/10.1145/3233547.3233595

1 INTRODUCTION

Molecular dynamics (MD) simulations are a useful tool for making
theoretical predictions for future experimental validation and al-
lows energy landscape exploration for studying meta-stable confor-
mations and the transitions between them [14]. While the problem
of capturing meta-stable states may often be successfully resolved
within the timescale of the simulation, finding those states is often
performed with automated techniques such as clustering. Although

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ACM-BCB’18, August 29-September 1, 2018, Washington, DC, USA

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5794-4/18/08...$15.00
https://doi.org/10.1145/3233547.3233595

Joshua L. Phillips
Department of Computer Science
Middle Tennessee State University

Murfreesboro, Tennessee
joshua.phillips@mtsu.edu

there are many clustering algorithms, not all of them can be success-
fully applied to such high-dimensional models. In particular, recent
work in the clustering literature shows that many high-dimensional
data sets explore a mixture of independent subspaces and previous
clustering studies of MD data have ignored such effects. Here we
explore the application of subspace clustering techniques to MD
simulation data and compare the performance with traditional spec-
tral clustering (SC) algorithms [12]. By examining multireplicate
simulations of two natively-folded proteins (NFP) and two intrinsi-
cally disordered proteins (IDP), we hope to show when and why
such approaches may be superior to traditional techniques.

2 BACKGROUND
2.1 Clustering Problem

We want to divide a given set of points X = {x; € R4 }J]\il into n
groups in such a way that each group contains a subset of points
that share similar qualities unique to each particular group. Vari-
ous approaches to solving this problem have been developed and
applied to molecular dynamics simulations [1] [9] [8] [15] [16].
Even though clustering has been a common analysis technique
for the field, to our knowledge, recent clustering algorithms such
as subspace clustering [4] have not been applied to molecular dy-
namics simulation data. Subspace methods assume that a mixture
of different processes may contribute to an overall data set, and
multi-replicate simulations common in the field may exhibit such
properties. We explore this possibility in the following sections.
Spectral clustering [18] and Subspace clustering [3, 4] details may
be found in supplementary materials https://github.com/fi02003/
PYSSC/blob/master/hybrid_pyssc_supplementary_materials.pdf in
section 'Extended Methods’ while here we will concentrate only on
the key features needed for interpetation of methods and results.

2.1.1 Spectral clustering. For representation of relations be-
tween points we built similarity graphs that consisted of all vertices
connected with a similarity function that encodes all connections.
As a similarity function we picked the Gaussian similarity func-
tion (GSF) which is one of the most commonly used functions for
further refinement of the neighborhood graph and is defined as
s(xi,xj) = exp(—||x; —xj||z/2crz), where o is a user-defined pa-
rameter which determines the rate of decrease in similarity for
all points. Entropic affinities (EA) may be used to select values
for ¢ in a data-driven manner [7, 17]. Similarity graph was built
with k — nearestneighborsgraph method. Another vital part of the
Spectral clustering method is computation of the approximate nor-
malized cut for which we applied singular value decomposition
(SVD) to the graph Laplacian.

https://doi.org/10.1145/3233547.3233595
https://doi.org/10.1145/3233547.3233595
https://github.com/fio2003/PYSSC/blob/master/hybrid_pyssc_supplementary_materials.pdf
https://github.com/fio2003/PYSSC/blob/master/hybrid_pyssc_supplementary_materials.pdf

2.1.2 Subspace clustering. Key part of the Subspace clustering
is a sparse solution of the problem x; = Xc¢;j described in details
in supplementary materials, subsection *Subspace Clustering’ and
defined as C. We define S as a a set of m (affine) subspaces {S[}?’:l
in d dimensions.

Please note that Spectral clustering is capable of clustering non-
linear problems, but it was not designed to work with multiple
subspaces. On the other hand standard subspace clustering works
with affine subspaces but has poor performance on data with non-
linear properties. Both of these statements naturally lead us to
an approach which combines the strengths of the two algorithms
described above.

2.1.3 Normalized Mutual Information. Since we need some tool
to quantitatively measure each algorithm’s ability to separate data
into clusters, we utilize normalized mutual information (NMI). Full
definition can be found in supplementary materials, subsection
’Normalized Mutual Information’. Mutual information reflects the
dependence of two variables, in our case - simulation replicate
number (R) and cluster number (F).

2.2 Methods

As follows from the descriptions above, the connecting link can be
found at the steps just prior to SVD. Among different approaches,
we suggest that dot product (SDS) and element-wise (SES) mul-
tiplications of both affinity matrices (standard spectral and stan-
dard subspace) may resulted in NMI increase. In other words, only
weighted connections between points which exist in both the stan-
dard similarity graph (nonlinear) and the subspace-sparse graph
(affine subspace) should be preserved. Therefore, a general, efficient
algorithm may be defined:

(1) Compute optimization coefficients C.

(2) Compute affinity matrix S.

(3) Construct matrix M = SC - C (SDS) or M = SC = C (SES)
(4) Construct graph Laplacians.

(5) Perform singular vector decomposition.

(6) Run k-means algorithm.

2 T T T
1 ” |
-’
‘e . J
: d’”‘“ y vt T te we
o e
+
1 oty wae
L e e o
A
e
2F g
3
-6 4 z 1} 2 4 [

Figure 1: Example of a complex manifold with structures
considered challenging for standard clustering algorithms.
Red area shows a region hard for subspace algorithms to sep-
arate. Yellow area indicates a region hard for spectral clus-
tering to separate.

2.2.1 Geometric Rationale. The standard Gaussian affinity graph
will connect points within close proximity to one-another, but ex-
clude those far apart as shown in red (see Figure 1). This property
preserves the relationships between points along nonlinear mani-
folds. The yellow area where the blue and green data sets intersect
is however problematic since local connectivity blurs the relation-
ship between different manifolds and will connect the manifolds
together. The subspace method treats all blue points and part of
the green points (red area) as one subspace since they are observed
to lie in the same affine subspace (along the same line in the am-
bient space). However, the boundary points in the yellow area are
more separated between subspaces than when using the Gauss-
ian affinity function. This geometric interpretation suggests that
a combination of Gaussian affinities and subspace algorithm coef-
ficients may result in better separation of points in both red and
yellow areas. In both approaches, we express all points as vectors
of n weights. When both methods agree to connect certain points,
such connections result in higher weights in the final connectivity
matrix. When they disagree, the connectivity coefficients will be
lower and result in breaking unreliable links (spurious connectiv-
ity relations created by either the standard spectral or subspace
algorithms, independently).

2.3 Implementation

2.3.1 Data Preparation. We studied two general types of pro-
teins: Natively folded proteins (NFP) and Intrinsically disordered
proteins (IDP). NFPs fold into stable conformers thus utilizing fewer
available degrees of freedom and limiting variation in conformation
over time. Proteins for the NFP group were picked in such a way
that we have representation of two major structural classes - alpha-
helical (Trp-cage [11]) and beta-sheet (GB1 hairpin [6]). Trp-cage
and GB1 are well-known and widely used in MD simulation to
demonstrate secondary and tertiary structure as well as fast folding.
IDPs do not tend to converge to some particular conformer, thus
their simulation results in a broad variety of trajectories. NSP1 [5]
was picked as an example of relaxed-coil structure which exhibits
few meta-stable conformations and Nup116 [5] as an example of
compact collapsed-coil structure with many meta-stable conforma-
tions [19].

All simulations were performed using GROMACS 4.5.4 [2] using
the AMBERfT99SBildn [10] forcefield and TIP3P water model with
150 mMol NaCl added to neutralize the system. For each protein
we created 10 independent simulations with duration 350ns each,
but with different initial velocities. Temperature profile specified
in supplementary materials in section “Temperature profile’ and
reflects heating each protein into a highly disordered shape and
then monitoring its return to the native stable state.

The integration time step was picked as 2 fs. The first 100ns (steps
1-3) were discarded as the equilibration phase. After simulation
we extracted the backbone structure from each simulation frame.
Prior to clustering the set of coordinate frames was translated
into Dihedral angle space and sin-cos embedding of the dihedral
angles with the Molecular Dynamics Spectral Clustering Toolkit
(MDSCTK) [13].

We created three data sets in order to test how data density
would affect our final result: Dense (DN) - frames were taken every

10ps resulting in 2501 points per simulation, then 10 simulations
were concatenated to form a complete data set with the size of
25010 points, Sparse (SP) - frames were taken every 100ps resulting
in 251 points per simulation, then 10 simulations were concatenated
to form a complete data set with size of 2510 points, and Super-
sparse (SS) - frames were taken every 1000ps resulting in 25 points
per simulation, then 10 simulations were concatenated to form a
complete data set with the size of 250 points.

2.3.2 Clustering Setup. K-nearest neighbors were precomputed
with MDSCTK and stored for future use. For experiments with plain
GSF, sigma values were hand picked to achieve top performance
among different proteins, but all results were saved for future anal-
ysis. The sigma/perplexity selection strategy used was: the range
of values was ’scanned’ for the best NMI values and then picked for
a finer ‘neighborhood’ search. Note that not all sigma/perplexity
values may be present in all experiments since for each protein
different sigma/perplexity values resulted in high NMI. We applied
a similar strategy for picking k-nearest neighbors.

For final clustering we ran the k-means++ algorithm 80 times
(due to its stochastic nature). Our experience suggests that this was
more than enough since the maximum deviation was only 0.042
NMI and the average deviation was only 0.005 NMI. Other imple-
mentations of the k-means algorithm may require different number
of executions to improve stability or decrease overall computation
time. NMI was computed and stored after every iteration in order
to derive maximum, minimum, average, and median values for the
particular test set. We used only median data for future analysis. Ad-
ditional results may be found online at: https://github.com/fi02003/
PYSSC/tree/master/pyssc_usage_and_raw_results/results_database/
results.7z. All code implementation along with more detailed results
can be found at: https://github.com/fi02003/PYSSC. Our parallel
scheduler which we used for running the analysis can be found at
https://github.com/fio2003/PYSSC_scheduler.

2.3.3 Statistical Analysis. Analyses of the clustering results for
the above experiments were performed as follows.
Overall performance analysis: We selected the highest NMI val-

ues among each group of algorithms, protein types, affinity types,

and data densities (categories) and created three Tables (1, 2, and 3)

which consist of the intersection of algorithms and proteins.
Graph segmentation analysis: We plotted the relationship be-

tween NMI values and perplexity, sigma and k-nearest neighbors
for each category to analyze unique properties. Each graph was
divided into three segments. Later each segment was classified ac-
cording to Figures 2 and 3. Two examples of such a classification
can be observed in Figures 3 and 4 in supplementary materials.

Segmented graph analysis: We used the previous classification
to plot the relationship between the width of graphs described in the
previous paragraph and NMI values. Each graph was divided into
nine sectors: three for NMI classification and three for thickness
classification. For each sector we counted number of segments that
fall into each of the sectors to show the relationship between NMI
values and variance for each category.

Boxplox analysis: Finally, we used violin plots and boxplots to
better describe the distribution of NMI values inside each combina-
tion of categories.

All percentages shown are calculated as follows: W + M + N =
100% and "/" + "-" + "\" = 100%. All others (CT, CS, S) show percent
of maximum possible value.

Graph thickness
W width more than 0.1 NML
M width between 0.05 - 0.1 NML
N width less than 0.05 NML
CT flags that two adjacent segments

were classified differently.

Figure 2: Width definitions

Graph shape behavior
/ grows more than 0.05 NMI per segment
- does not grow/fall more than 0.05 NMI
\ falls/decreases more than 0.05 per segment.
significantly - more than 0.1 NMI per segment.
CS changes live /\or V/, also called A and V shapes.

Figure 3: Graph shape definitions

3 RESULTS

All tables below contain the median NMI results for the correspond-
ing experiments.

3.1 Overall Performance (Detailed)

For the dense data we used only entropic affinities due to the pro-
hibitive computational cost of exploring the parameter space for
fixed sigma.

Entropic affinity

TRP Cage | GB1 NUP116 | NSP1

0.4495 0.5053 | 0.7447 0.5114 | SC
0.2848 0.2772 | 0.4157 0.3128 | Subspace
0.3892 0.3991 | 0.5869 0.4148 | SDS
0.3752 0.4695 | 0.5794 0.5052 | SES

Table 1: Best NMI values for each protein obtained with all
algorithms using entropic affinities and the dense data set.

3.1.1 Entropic Affinities Analysis. Discussion below is in refer-
ence to Table 1. Algorithms: For all cases the SC algorithm showed
the highest NMI values while the Subspace algorithm showed the
lowest results.

Proteins: NFPs (0.4495 for TRP Cage and 0.5053 for GB1) and
NSP1 (0.5114) demonstrated similar results while NUP116 demon-
strated a significantly higher NMI value (0.7447).

https://github.com/fio2003/PYSSC/tree/master/pyssc_usage_and_raw_results/results_database/results.7z
https://github.com/fio2003/PYSSC/tree/master/pyssc_usage_and_raw_results/results_database/results.7z
https://github.com/fio2003/PYSSC/tree/master/pyssc_usage_and_raw_results/results_database/results.7z
https://github.com/fio2003/PYSSC
https://github.com/fio2003/PYSSC_scheduler

Entropic affinity
NUP116 | NSP1

TRP Cage | GB1

0.4593 0.5048 | 0.7311 0.5545 | SC

0.4740 0.3665 | 0.6345 0.5182 | Subspace

0.4924 0.4662 | 0.7169 0.5432 | SDS

0.5018 0.4901 | 0.7214 0.5890 | SES
Plain affinity

TRP Cage | GB1 NUP116 | NSP1

0.3100 0.2485 | 0.2864 0.3037 | SC

0.4740 0.3665 | 0.6345 0.5182 | Subspace

0.4881 0.4319 | 0.6360 0.5350 | SDS

0.2685 0.3047 | 0.3395 0.3269 | SES

Table 2: Best NMI values for each protein obtained with all
algorithms for the sparse data set.

3.1.2 Entropic Affinities Analysis. Discussion below is in refer-
ence to Table 2. Algorithms: SES demonstrated high NMI values
for all proteins, but SC was slightly better for GB1 and NUP116.
Subspace performed the worst among algorithms for IDPs and GB1.

Proteins: TRP Cage and GB1 had almost identical NMI values -
0.518 for TRP Cage and 0.5048 for GB1. NSP1 had slightly higher
NMI - 0.589 than both NFPs. NUP116 had the highest NMI among
all proteins - 0.7311.

3.1.3 Plain Affinities Analysis. Discussion below is in reference
to Table 2. Algorithms: SDS showed the highest NMI among al-
gorithms for all proteins while SC had the lowest NMI values for
GB1 and IDPs. SES showed the lowest NMI value for TRP Cage.
Proteins: NFPs had lower NMI values, while IDPs had higher NMI
values.

Entropic affinity
NUP116 | NSP1

TRP Cage | GBI

0.4508 0.4592 | 0.5941 0.4797 | SC

0.4150 0.3861 | 0.6586 0.4685 | Subspace

0.4170 0.4017 | 0.6727 0.4624 | SDS

0.4224 0.4095 | 0.6509 0.5128 | SES
Plain affinity

TRP Cage | GB1 NUP116 | NSP1

0.3496 0.3181 | 0.2989 0.1575 | SC

0.4150 0.3861 | 0.6586 0.4685 | Subspace

0.4273 0.4159 | 0.6759 0.4685 | SDS

0.3487 0.3490 | 0.3210 0.3016 | SES

Table 3: Best NMI values for each protein obtained with all
algorithms for the super-sparse data set.

3.1.4 Entropic Affinities Analysis. Discussion below is in refer-
ence to Table 3. Algorithms: SC performed the best for NFP group
with NMI values of 0.4508 and 0.4592 for TRP Cage and GB1 respec-
tively, but demonstrated the worst NMI value of 0.5941 for NUP116.
Subspace demonstrated the lowest NMI values for the NFP group
resulting in 0.4150 and 0.3861 for TRP Cage and GB1 respectively.
SDS demonstrated the highest NMI value for NUP116 - 0.6727, but

the lowest NMI value for NSP1. SES demonstrated the highest value
for NSP1 - 0.5128. Proteins: Both NFPs showed similar values and
within the IDP group, NUP116 had the highest NMI value - 0.6727.

3.1.5 Plain Affinities Analysis. Discussion below is in reference
to Table 3. Algorithms: SC demonstrated the worst NMI results
for the IDPs and GB1. SDS demonstrated the highest NMI values
for all proteins. Subspace demonstrated the same (highest) NMI
value for NSP1. SES demonstrated the worst NMI values for TRP
Cage protein. Proteins: Like in the Sparse data case, the NFP group
demonstrated similar results and in the IDP group, NUP116 had the
highest value - 0.6759.

3.2 Overall Performance (General)

Based on the detailed results above, it is clear that SES depends more
on SC while SDS depends more on Subspace. Entropic affinities
generally demonstrated better NMI values for all algorithms with
one exception: the NMI value obtained for NUP116 in the super-
sparse data with SDS and plain affinities was not significantly higher
(0.6759) than the same combination with entropic affinities (0.6727).
SC combined with entropic affinities is the best for all proteins
in the dense data, GB1 and NUP116 for the sparse data, and the
NFP group for the super-sparse data. SES demonstrated the best
results for TRP Cage and for the sparse data and NSP1 for the sparse
and super-sparse data sets. For plain affinities SDS with sparse and
super-sparse data showed the best results among all algorithms
for all proteins. In general also, SC was almost always the worst
algorithm to use with plain affinities.

3.3 General Graph Segmentation Results

3.3.1 Sparsity. Graph thickness: For knn, the sparser the data,
the more narrow graphs are produced. For perplexity/sigma we
see the opposite trend. Both show more CT with denser data.
Graph shape: For knn, all results were pretty much identical, but
the denser data contained more CS. Angles were also smaller. For
perplexity/sigma, denser data contained slightly fewer straight parts.

3.3.2 Algorithms. Graph thickness: For knn, SDS and SES showed
thinner shapes than SC. For perplexity/sigma SC showed thinner
shapes, SDS second, and SES was the last in this regard, but SES
thickness variation was less (30% for SES and 45% for SC). Graph shape:
For knn, SC had the most (83%) straight lines, while SES had the
least number (43%). There was the opposite situation with curva-
ture, where SC had small curvature and SES had sharp curvature.
For perplexity/sigma, there were no significant differences except
that SC had the highest number of CS, but SES had the smallest.

3.3.3 Affinity. Graph thickness: For knn, entropic affinities ex-
hibited twice as many narrow parts compared to plain affinities
and a very similar situation with regard to changes, so entropic
affinities were more stable. For perplexity/sigma the situation was
the same, 68% vs 7% narrow parts for entropic and plain affinities,
but 56% vs 17% for changes. The situation with changes can be
explained since often there was just an even distribution of points
that did not give any information, but was not treated as a thickness
change. Graph shape: For knn, entropic affinities produced more
straight lines, less CS and significantly less curvature than plain

affinities. For perplexity/sigma entropic affinities contained slightly
fewer straight regions.

3.3.4 Protein type. Graph thickness: For knn, both were simi-
lar, but NFP produced more narrow pieces and significantly less
changes. For perplexity/sigma, big difference was only with changes
33% vs 50% for for NFP and IDP. NFP had slightly more narrow
parts. Graph shape: For knn, NFP contained more straight regions
and less CS. For perplexity/sigma NFP still contained a little more
straight regions and less A and V shapes.

More detailed analysis of graph segmentation can be found in
the supplementary materials.

3.4 Segmented Graph Analysis

Graphs displayed in Figures 4, 5, 6, 7, 8 have only categorical mean-
ing. The points inside sectors were slightly (randomly) displaced
along the x-axis to provide perspective concerning the number of
points with similar NMI values.

Spectral SDS SES
08 0.8 08
07 ' : 074% 07 ™
1 7 11 7 01 12, 9 3 4°
06 .| 06 N “
L ..'
05+ 054 R
P K A B
-~ < s .
= i _ o
E 04 E 0443, y E 0447y
£ 6 6 16|° 24 8 8 |°F 22 2 14,
. b
03 “t| 034 034.. ot
N »>
02 - . | 021 024}
&7 2 4 0O 0 © 4 1 1
01 0.1 014
001 v — 00l r — 00l T
N M W N M w N M w
width width width

Figure 4: Relationship between NMI values and variation for
the SC (left), SDS (middle), and SES (right) algorithms for the
k-nearest neighbors batch. Numbers on the graph indicate
the number of points in that sector.

Spectral SDS SES
08 08 08
07 ’ 074,% X 0.7—1'
12 3 0 6 4 10 8 4 2
06 - . 06 . . o oosd,
053 . 055 .. 05— -
@ o = -.I N = lw
€117 6 10|28 £ 105715 6 25
03 ‘ 0.3 034, §
. B
021. -] o0z 024
2 3 7 0 0 O 0o 0 o0
01 014 014
00 0.0 0.0
N M w N M w N M w
width width width

Figure 5: Relationship between NMI values and variation for
the SC (left), SDS (middle), and SES (right) algorithms for the
perplexity/sigma batch. Numbers on the graph indicate the
number of points in that sector.

Dense Sparse Supersparse
08 08 08
0.7 07 {4 ’ o7
3 3 10 9 7 3 5 1 5,
0.6 .| o064 - 0.6 -
054 0.5 a7 ~ 05+ -
. 5 4 . N
E 04 E 04 Eosd{®
2 6 5 16 1 0 17 2 6
034" 0.3 03
024 0.2 0.2
0o 0 o 0 0 o0 0 0 0
0.1+ 0.1 01
0.0 0.0 0.0
N M w N M w N M w
width width width

Figure 6: Relationship between NMI values and variation for
the Dense (left), Sparse (middle), and Super-sparse (right)
data sets. Numbers on the graph indicate the number of
points in that sector.

Entropic Plain
0s 08
074 ' | or
4 8 87, 0 0 9
06 R .y os
05 . -| o5 s
o :
% . <
933 3 6 [E]a0 T |27
03 031.. ' =
02 02"
0O 0 O 11 3 5
01 01
001 - 00l - .
N M w N M w
width width

Figure 7: Relationship between NMI values and variation for
Entropic (left) and Plain (right) affinities. Numbers on the
graph indicate the number of points in that sector.

NSP1 NUP116 GB1 Trp Cage
08 08 08 08
07 07{% ’ 07 0.7
5 7 5 11 3 19, o 1 |3 1 0 o
06 . 06 | 08 064
B N . "
052 05 051w 0.5
i . i : : : :
) - s
Eoa] ! : E 04 E 047+ kX Eoa{™ :
8 2 10|=/0 1 8 18 8 8 26 5 12
03 + 03 RIECEE) ~| 03q. -
02/ : 02 ooz . 02+
6 2 0 2 0 1 2 1 4 1 0 O
01 01 01 014
0.0 00 00 0.0
N M w N M w N M w N M w
width width width width

Figure 8: Relationship between NMI values and variation for
IDPs: NSP1, NUP116 (left) and NFPs: GB1, TRP Cage (right).
Numbers on the graph indicate the number of points in that
sector.

3.4.1 Algorithm. We found that despite differences in behav-
ior between the k-nearest neighbors and perplexity/sigma batches,
we still can see a clear difference between algorithms inside each

group. In the k-nearest neighbors case (Figure 4) SDS produced
generally higher NMI values than SC and SES produced more con-
sistent results, most of which were described as ‘narrow’. In the
perplexity/sigma batch we may observe that both SDS and SES
demonstrate generally higher NMI than SC, but also have more
variation which can be observed in figure 5.

3.4.2 Density. Both sparse and super-sparse plots showed sim-
ilar behavior for both k-nearest neighbors and perplexity/sigma.
Denser data produced slightly higher NMI, which can be seen on
Figure 6.

3.4.3 Affinity. We found that there is a clear difference between
plain and entropic affinities. Entropic affinities demonstrate more
narrow variation and higher NMI values than plain affinities (see
Figure 7). Graphs for perplexity/sigma (data not reported here, but
can be found inside the git repository mentioned above) showed
even stronger difference, describing most points with plain affinities
as wide and most points with entropic affinities as narrow.

3.4.4 Proteins. Results for the k-nearest neighbors and perplex-
ity/sigma batches were consistent and showed clear differences
between IDP and NFP groups. The NFP group contained moder-
ate NMI values while the IDP group contained higher NMI values.
Inside the NFP group both proteins show similar behavior, while
inside the IDP group NUP116 demonstrated significantly higher
NMI values than NSP1 which can be found in Figure 8. Consistency
inside the NFP group was expected since they have very similar
structure and tend to fold fast producing similar trajectories during
each simulation. Inconsistency inside the IDP group can also be
explained when we look closer at their known physical properties:
NUP116 tends to have many semi-folded shapes resulting in dif-
ferent trajectories that are easier to separate. On the other hand,
NSP1 tends to have many large-amplitude movements and no par-
ticular semi-folded shapes which results in producing more chaotic
trajectories that are harder to separate.

4 DISCUSSION

We have performed a thorough analysis of the clustering results
produced by SC, Subspace, SES, and SDS and their EA improvements
on variable-density MD simulation data. The results section shows
that EAs significantly improve clustering quality and should be used
instead of plain affinities for all algorithms. Hybrid solutions such
as SES and SDS in most cases either improve clustering accuracy
or stability of the clustering results.

We found that increasing data density significantly increases
clustering time, but did not always produce better clustering accu-
racy. Since the entropic affinities approach is not necessarily the
standard approach used in the field, our results indicate that the sub-
space clustering algorithm and both SDS and SES produced higher
(55% more) NMI values than SC. Therefore, our approach of reusing
results of the convex optimization solution is a geometrically well-
motivated method for dealing with data displaying both subspace
and nonlinear components. However, the EA results attest to the
fact that much of the issue with clustering MD simulation data is
due to nonuniform sampling. Additionally, it was clear that IDPs
were easier to cluster than NFPs which was not surprising due to
lack of simulation convergence. This result only bolsters the need

for better clustering approaches such as SDS and SES. Although
we concentrated on MD simulations, SDS and SES improvements
should be similar for other data with similar properties. This can
lead to better clustering results in areas that intensively use clus-
tering techniques, such as text recognition, image processing, data
science, etc. Although higher k generally resulted in higher NMI
values, it also required more computational time. Analysis of mini-
mum NMI results may be of interest since algorithmic stability may
be more important for computationally demanding data sets.

REFERENCES

[1] Christoph Best and H-C Hege. 2002. Visualizing and identifying conformational
ensembles in molecular dynamics trajectories. Computing in Science & Engineering
4,3 (2002), 68-75.

Robert B Best, Xiao Zhu, Jihyun Shim, Pedro EM Lopes, Jeetain Mittal, Michael

Feig, and Alexander D MacKerell Jr. 2012. Optimization of the additive CHARMM

all-atom protein force field targeting improved sampling of the backbone ¢, i and

side-chain y1and y2 dihedral angles. Journal of chemical theory and computation

8,9 (2012), 3257-3273.

Stephen Boyd and Lieven Vandenberghe. 2004. Convex Optimization. Cambridge

University Press, New York, NY, USA.

Ehsan Elhamifar and René Vidal. 2012. Sparse Subspace Clustering: Algorithm,

Theory, and Applications. CoRR abs/1203.1005 (2012). http://arxiv.org/abs/1203.

1005

André Goffeau, Bart G Barrell, Howard Bussey, RW Davis, Bernard Dujon, Heinz

Feldmann, Francis Galibert, JD Hoheisel, Cr Jacq, Michael Johnston, et al. 1996.

Life with 6000 genes. Science 274, 5287 (1996), 546-567.

Angela M Gronenborn, David R Filpula, Nina Z Essig, Aniruddha Achari, Marc

Whitlow, Paul T Wingfield, and G Marius Clore. 1991. A Novel, Highly Stable

Fold of the Immunoglobulin Binding Domain of Streptococcal Protein G. Science

253, 5020 (1991), 657-661.

Geoffrey E Hinton and Sam T Roweis. 2003. Stochastic neighbor embedding. In

Advances in neural information processing systems. 857-864.

[8] Rao Huang, Li-Ta Lo, Yuhua Wen, Arthur F Voter, and Danny Perez. 2017. Cluster
analysis of accelerated molecular dynamics simulations: A case study of the
decahedron to icosahedron transition in Pt nanoparticles. The Journal of chemical
physics 147, 15 (2017), 152717.

[9] Mary E Karpen, Douglas J Tobias, and Charles L Brooks III. 1993. Statistical

clustering techniques for the analysis of long molecular dynamics trajectories:

analysis of 2.2-ns trajectories of YPGDV. Biochemistry 32, 2 (1993), 412-420.

Kresten Lindorff-Larsen, Stefano Piana, Kim Palmo, Paul Maragakis, John L

Klepeis, Ron O Dror, and David E Shaw. 2010. Improved side-chain torsion

potentials for the Amber ff99SB protein force field. Proteins: Structure, Function,

and Bioinformatics 78, 8 (2010), 1950-1958.

Jonathan W Neidigh, R Matthew Fesinmeyer, and Niels H Andersen. 2002. De-

signing a 20-residue Protein. Nature Structural and Molecular Biology 9, 6 (2002),

425.

Andrew Y Ng, Michael I Jordan, and Yair Weiss. 2002. On spectral clustering:

Analysis and an algorithm. In Advances in neural information processing systems.

849-856.

Joshua L. Phillips, Edmond Y. Lau, Michael E. Colvin, and Shawn Newsam. 2008.

Analyzing dynamical simulations of intrinsically disordered proteins using spectral

clustering. 17-24. https://doi.org/10.1109/BIBMW.2008.4686204

Joshua Lee Phillips. 2012. Validation of computational approaches for studying

disordered and unfolded protein dynamics using polymer models. (2012).

Joshua L Phillips, Michael E Colvin, and Shawn Newsam. 2011. Validating

clustering of molecular dynamics simulations using polymer models. BMC

bioinformatics 12, 1 (2011), 445.

Sarah Rauscher and Régis Pomes. 2010. Molecular simulations of protein disorder.

Biochemistry and cell biology 88, 2 (2010), 269-290.

Max Vladymyrov and Miguel Carreira-perpinan. 2013. Entropic Affinities: Prop-

erties and Efficient Numerical Computation. In Proceedings of the 30th Interna-

tional Conference on Machine Learning (ICML-13), Sanjoy Dasgupta and David

Mcallester (Eds.), Vol. 28. JMLR Workshop and Conference Proceedings, 477-485.

http://jmlr.org/proceedings/papers/v28/vladymyrov13.pdf

Ulrike Von Luxburg. 2007. A tutorial on spectral clustering. Statistics and

computing 17, 4 (2007), 395-416.

[19] Justin Yamada, Joshua L. Phillips, Samir Patel, Gabriel A Goldfien, Alison
Calestagne-Morelli, Hans Huang, R. de la Reza, Justin F. Acheson, Viswanathan
Krishnan, Shawn D. Newsam, Ajay Gopinathan, Edmond Y. Lau, Michael E.
Colvin, Vladimir N. Uversky, and Michael F. Rexach. 2010. A bimodal distribution
of two distinct categories of intrinsically disordered structures with separate
functions in FG nucleoporins. Molecula 9 10 (2010), 2205-24.

[2

—
&

4

[5

[6

—
)

[10

[11

[12

=
&

[14

[15

[16

[17

[18

http://arxiv.org/abs/1203.1005
http://arxiv.org/abs/1203.1005
https://doi.org/10.1109/BIBMW.2008.4686204
http://jmlr.org/proceedings/papers/v28/vladymyrov13.pdf

	Abstract
	1 Introduction
	2 Background
	2.1 Clustering Problem
	2.2 Methods
	2.3 Implementation

	3 Results
	3.1 Overall Performance (Detailed)
	3.2 Overall Performance (General)
	3.3 General Graph Segmentation Results
	3.4 Segmented Graph Analysis

	4 Discussion
	References

