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CHAPTERI

INTRODUCTION

When | wake up in the morning and go into the kitchen, | am surded by an array
of everyday kitchen utensils and appliances. Assumingenidtto make a cup of coffee,
| need to find a coffee mug. The process of identifying whicleots in the kitchen are
coffee mugs and which are not is critical to my success in ngathe cup of coffee. Thisis
a process called categorization. Other examples of taskéving categorization include
picking out all of the red trucks in a parking lot, or separgtyour winter clothing from
your summer clothing. In both cases, various objects ameglander scrutiny and, based
on their makeup, one makes a decision as to whether theydielome category or another.
Importantly, | had to learn what made something a coffee naigrie | could find it in my
kitchen. | also needed to learn the difference between gars, and trucks to find them
in the parking lot. Over time | had to learn what charactarssbf these objects made them
belong to these various categories. This process is knowatagory learning.

Category learning has been studies by psychologists foy iyears. In a typical cate-
gory learning experiment, learners are presented withustisnobjects, one at a time, and
are asked to make classification judgments for each. Imredgitollowing each judg-
ment, feedback is provided, typically informing the learotthe correct category label for
the preceding stimulus. This sequence of events is donditregly, often with the same
stimuli being observed many times over. Once learning ispdeta, categorization judg-
ments are made without any feedback, and this can providendowi into the structure
of the learned category knowledge. During this part of thgeexnent, the frequency with
which each stimulus is classified as a member of each categorye observed. This offers
some insight into the criteria that subjects are using tegmize the stimuli. If the stimuli
used in this period are novel, having never been the focudradlan which feedback was

provided, then we can get an even better view of the genetedjcgy knowledge that was
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acquired. This is possible because these stimuli will fdheesubjects to generalize their
knowledge to the new stimuli, and their observable resppndécommunicate the nature
of this general knowledge.

A coffee mug has various features that allow me to categdaraesuch. For instance,
it has a certain shape, size, color, or texture. Howeverctter of a coffee mug can
vary significantly, and yet | do not stop calling it a coffee gnurhis means that when |
was learning to categorize coffee mugs, | had to learn tleatliimension of color was not
important to this decision. However, if the composition dmsion of the mug was changed,
so that it was now made of glass instead of ceramic, then ldvwoallonger call it a coffee
mug. These are examples of a commonly observed propertytejay learning known
as dimensional attention. Dimensional attention is wheémgedsions used to categorize
objects become more or less salient during the processedaatlearning.

Human category learning performance cannot be easily mgulavithout recourse to
a mechanism for selective dimensional attention (Shepaadl,e1961). Dimensional at-
tention is the cognitive process which emphasizes taskaetestimulus dimensions while
deemphasizing others. Thus, contemporary formal modetatefyorization, such as the
Generalized Context Model (GCM) (Nosofsky, 1984), haverporated adaptable dimen-
sional attention parameters. By adjusting these paramgter category-specific fashion,
the GCM has repeatedly provided excellent fits to human ddiacting the frequency (or
probability) with which each stimulus is recognized as atance of a target category.

The GCM has been used to explain a variety of phenomena inatfegary learning
domain. It explains why people strongly associate the "ayet stimulus belonging to
a category more than stimuli outside of the category witlcategory label, even if that
prototypical "average” stimulus has never been viewed feef@he GCM also captures
differences in categorization performance related to taguency with which individual

stimulus items are observed. This is accomplished by ngjatiformation about individual



stimuli in memory, allowing the GCM to simultaneously acobfor patterns of catego-
rization and recognition memory behavior (Nosofsky, 1984)

When the GCM is applied to experimental results, dimengiattantion parameters
are freely varied to optimize the fit of the model to human dathis means that, while
the GCM provides a powerful account of learned categoorgperformance, it offers no
explanation for how dimensional attention is adjusted dercourse of learning.

This shortcoming of the GCM has been addressed by a connisttinodel called AL-
COVE (Kruschke, 1992). ALCOVE incorporates the GCM'’s fotixetion of category
knowledge, but it also provides a precise algorithm for rfiyadg the attentional “weight”
assigned to each stimulus dimension, based on feedbacklpdxo learners on their cate-
gorization judgments.

The ALCOVE model uses the feedback provided during trainangalculate an “er-
ror signal”, which is simply the difference between the gaty assignment made by the
model and the specified “true” category. A variant of the Ipmokagation of error learning
algorithm (Rumelhart et al., 1986b) is used to communidaite érror signal to an early
stage of stimulus encoding, and this backpropagated eigoalsis used to adjust AL-
COVE's dimensional attention weights. Like the GCM, ALCOVE provides good fits to
human performance data on learned categories. It can axplisame phenomena as the
GCM, and also many others. It explains differences in leayspeed between different
category structures, apparent base-rate neglect, ancattearpof "three-stage-learning”
displayed by humans. Ciritically, unlike the GCM, ALCOVE pides a detailed account
of how dimensional attention is shaped by experience.

ALCOVE has been proposed as a modelpsychological processes, with virtually
no aspiration to explain the neural basis of human categgagning. Despite this fact,
the combination of the empirical successes of ALCOVE andatsnectionist formaliza-
tion make the model a tempting candidate for a coarse cleization of associated brain

mechanisms. Perhaps ALCOVE can be refined, with each of ejggsed psychological



mechanisms mapped onto a corresponding detailed accotim ohderlying neural ma-
chinery. One feature of ALCOVE that stands in the way of su¢hemretical reduction
is its use of the backpropagation of error algorithm in otddearn dimensional attention
weights. This powerful learning algorithm has long beetiaizied for its lack of biolog-
ical plausibility (Crick, 1989), suggesting that the brasnnot be adapting dimensional
attention based on such a gradient-based technique (&Rejly, 1996).

As a first step toward a biological model of category learningplaced the backprop-
based dimensional attention mechanism used by ALCOVE withirdorcement learning
mechanism intended to reflect the role of the brain’s dopar(idA) system in learning.
This role for dopamine has been formalized by other reseasdh terms of an algorithm
calledtemporal difference (TD) learning (Sutton, 1988; Montague et al., 1996). Versions
of ALCOVE which adapt dimensional attention weights usihg biologically supported
TD learning method, instead of the more computationally gxduf but biologically im-
plausible backpropagation method, were found to fit humafopeance data about as
well as the original ALCOVE. Thus, this work offers a more Ibgically realistic model
of the adaptation of dimensional attention without sadnficaccuracy in accounting for
human categorization behavior. Also, the ability to captoimman performance with the
highly stochastic TD learning method suggests that our itiwgmmechanisms for adapting

dimensional attention may not be as precise as those projpys&LCOVE.



CHAPTER I

BACKGROUND

Category Learning Paradigm

In standard category learning tasks, the participant Isdgyrsimply observing a stim-
ulus and making a guess as to which category the stimulusg®ld-ollowing this guess,
the participant is provided with some form of feedback tingicates the actual category
for the stimulus presented. The presentation of a stimalhésparticipant response, and
the presentation of feedback all together make up a triad. piticipant then goes through
several hundred to several thousand trials attempting tamize the number of correct
responses. This portion of the task is known as the trainirag@. After training is com-
plete, several trials are done where the feedback portigheofrial is withheld. This is
known as the transfer phase of the task. The participanbrnsgs are recorded during the
transfer phase (also often called the testing phase.) Trassder phase responses are then
analyzed to discern the probability of each stimulus beiagsified under each classifi-
cation. The transfer phase provides insight into how sibjaeie categorizing the stimuli
by providing statistical evidence for certain categoiaastrategies that subjects might be
using.

The stimuli used in current category learning studies aenafomposed of features that
vary across constituent stimulus dimensions. For instanset of stimuli might vary across
the dimension of color where individual features along tlimsension might be white, grey,
or black. This characterization of a stimulus is in conttash more featural view, where
the individual features of white, grey, and black are seebeisg independent or having
no inherent relationship to each other psychologicallye @mensional representation has
at least an ordinal arrangement of stimulus features, allpfeatures to be compared in

similarity by their relative “locations” along the stimdwalimensions. An example of such



a representation can be seen in Figure 1 where there are ifeeredt stimuli that vary
across two dimensions: size of the circle and orientatiothefradial line. These stimuli
are then mapped onto a dimensional space where the stimukpresented as individual
points in the space. In such a dimensional space represgrsaheme, individual stimulus
items are encoded as points in the space. These points actesk$o that the distance be-
tween two points in thipsychological space is inversely related to the perceived similarity
between the two corresponding stimuli. This similaritgtdince requirement often cannot
be met if the axes of the representation space are forcedrespond to arbitrarily chosen
dimensions, using arbitrary units along each one. For el@rtie size of a circle might be
represented by its diameter or by its area, and perceivathsimbetween sizes may map
onto only one of these measures. In order to ensure thahdesta the representation space
is approximately related to perceived similarity, it is aon to derive of discover the di-
mensions of this space by applying Multidimensional Sgg{MDS) techniques to explicit
measures of perceived similarity (Shepard, 1957; Shed®&@Ra; Shepard, 1962b). For
example, the degree to which stimuli are confusable cand®saed using an identification
study (a category learning study where each stimulus is tpldeed in its own separate
category), and MDS can be applied to this confusabilityrimfation in order to generate a
dimensional psychological space which appropriatelywast similarity between stimuli.
All of the models discussed in this paper use a dimensiopaésentation of this kind in
order to encode stimuli.

Several hypotheses about the strategies that subjects$ bagimploying to categorize
stimuli have been proposed. At first, it was thought thatectisjformed simple rules that
defined category membership. In other words, the subjeats theught to be inventing a
list of sufficient conditions (or stimulus features) thatttbbe used to determine category
membership. If a stimulus met all of the conditions for mersh@ to a particular category
then the subject would respond with this correspondinggoatelabel. Thus, category

boundaries were generally taken to be sharp and absolute.
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Figure 1: Four stimuli consisting of two dimensions (size anientation) mapped to their
corresponding representation in psychological space

Rule-based representations of categories allow for theichghation of members from
non-members, but they do not provide a way to separate “gedfiplars of a category
from borderline cases. This is in conflict with the fact thatrtan categorization behavior
often displays a variable and graded response to differemmers of a category. For
example, people often respond that a recliner is a chaierfalsan when they make the
same categorization for a bar stool (that has a back portPeyple are also less likely to
categorize the bar stool as a chair than the recliner. Finadbple report that they consider
the recliner more like a chair than the bar stool. These sirtesponses suggested to
some researchers that there is some kinprototype stimulus or an “average” of stimuli,
that embodies knowledge of a category (Rosch and Mervis5)19To categorize a new
stimulus, it is compared to the prototype, with similarityvthg responding.

Even though the prototype view of categorization accouotste graded nature of
many categories, it does not account for stimulus frequefigcts. If the frequency of
seeing the various stimuli is not the same for all stimulihe study, then performance
will generally be better for high frequency items, even ggb are fairly dissimilar to the
category prototype. In general, subjects tend to be seasiithe particular distribution

of observed stimuli and not only to the mean (i.e., protoyygdehis distribution. This has



led researchers to postulate that many stimuli are retametemory throughout training

and used for categorization (Medin and Schaffer, 1978).sTimstead of a prototype, a
number of individual exemplars is compared to the currantdtis to ascertain category
membership. Since certain exemplars are seen more frégubey tend to be associated
with category membership more than stimuli that are seeftequently. Thus, exemplar-
based models of categorization can account for this effbetrasimple prototype models
fail.

The exemplar theory of categorization now dominates thegoay learning paradigm,
and many mathematical or computational models of categtioiz have been developed
based on this theory. Two of the most prevalent and sucdassfdels are examined in
detail later in this paper, the Generalized Context Modelgdsky, 1984) and the Attention
Learning Covering Map (Kruschke, 1992). However, hybriciels of categorization have
been developed recently that are influencing current theaf category learning as well.
Some of these models attempt to combine the exemplar-badedle-based strategies into
a cohesive framework. For example, ATRIUM (Erickson and $¢hke, 1998) consists
of two interacting systems: one that accomplishes ruledbdsarning and another that
accomplishes exemplar-based learning. RULEX (Nosofsky.£1994) is a model of rule-
based learning that incorporates the learning of exceptiamich are particular stimuli
that seem to fit the rule but belong in some other categoryn Bvare interesting behaviors
result when subjects are actually provided with a categtidm rule before training. This
is known as instructed category learning. Exemplar infdaiomsactually seems to interfere
with subjects’ abilities to properly use the given rule, dnese interference effects can be
explained using a hybrid model incorporating rule repréesgns and exemplar similarity
information (Noelle and Cottrell, 2000).

Of particular interest here is the notion of selective disienal attention in category
learning theory. Dimensional attention is the ability ofntans to selectively emphasize

or deemphasize dimensions to aid categorization. For sasks,tsome dimensions might



be of no relevance when categorizing the stimuli. Reducttenton to these dimensions
would improve performance. This makes sense intuitivelyabse people seem to have
limited attentional resources. If attentional resourcesadlocated more appropriately, then
it will take less time and effort to solve a task. Converselyending to more relevant
dimensions will improve categorization performance. Hamkarn to do just that when
categorizing stimuli. Even though exemplar models of aatgtgarning can explain human
performance well, they fail to do so without incorporatirggree mechanism for selective

dimensional attention (Shepard et al., 1961).

Generalized Context Model

The Generalized Context Model (GCM) (Nosofsky, 1984) is shamnatical, exemplar-
based model of categorization. It was developed to accautiLfiman performance in cat-
egory learning based on the Context Theory of Classificgtibedin and Schaffer, 1978),
a previous exemplar model of categorization. The GCM exdddantext Theory in two
ways: by incorporating a choice model for stimulus ideraificn (Luce, 1963) and by
incorporating a mechanism for selective dimensional itten The GCM assumes that
perceived similarity between stimuli is best representeteims of the distance between
stimulus representations in a multidimensional psychobdgpace, as described earlier.
However, in the GCM, as two stimuli become more distant inchsjogical space, their
measure of similarity exponentially decreases (Shep&87)L The choice rule is applied
to the calculated stimulus similarity ratings to generatgponse probabilities which are fit
to the human response probabilities from identification @atedgory learning studies.

The exponential similarity measure and choice rule incaafeal by the GCM allows
the model to fit human data from stimulus identification stsdivell. In these studies, all
stimuli are classified as belonging to their own individuaiegjories. All other aspects of
the task are the same as in typical category learning. Thaphjective of identification
tasks is to identify the stimuli individually. However, stilli close together in psychologi-

cal similarity space tend to be easily confused. This isevidn the human performance
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Figure 2: Stimuli of the two categories (filled or blank) hdewer between-category simi-
larity and greater within-category similarity as a restlslrinking the horizontal axis and
stretching the vertical axis.

data from the transfer phases of these tasks, where thensspoobabilities tell us some-
thing about how often close stimuli are mistaken for eacleiotempirically, the response

probabilities show that similarity does indeed decreagme&ntially with increasing psy-

chological distance. Also, the data from such studies canseel to discern the actual
positions of the stimuli in the psychological space using $3/f2chniques, as described
earlier. The MDS values are later provided to the GCM whemgtthe model to response
probabilities from the transfer phases of category legrsindies.

However, the exponential similarity measure by itself is @mough to account for hu-
man category learning data. Because people learn to payiattéo more relevant dimen-
sions and ignore irrelevant ones, the psychological spegms to change during these stud-
ies. The GCM formally models this by incorporating scalaneinsional attention weight
parameters, one for each stimulus dimension. These wesffletsively “shrink” the psy-
chological space along irrelevant dimensions and “stidtef psychological space along
more relevant dimensions. This makes stimuli seem higintyliar along irrelevant dimen-
sions so that no distinctions can be made using that dimenaiod the stimuli become
more dissimilar along relevant ones, making stimuli aldmgse dimensions easier to dis-

criminate. Figure 2 shows how these dimensional attenffects can aid discrimination.
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Due to the incorporation of this dimensional attention nagtbm, the GCM does an
excellent job of fitting human response probabilities fromtegory learning studies. The
dimensional attention weights do indeed morph the origisgthological space in the cor-
rect manner to account for the human data. However, thesendilonal attention weights
are free parameters in the GCM. So the model provides noatidicof how people might
be learning to morph the psychological space for bettegoaieation performance. To bet-
ter understand how people might be learning to do this, atietels have been proposed

that model the training phase of category learning studies.

Connectionist Modeling

A common approach to modeling various psychological andai®alogical phenom-
ena is the connectionist framework. In this framework, a$stmple processing elements
called units are arranged in groups calléayers. Units are connected to other units via
connections. Often all of the units in one layer connect tofahe units in another layer
for computational simplicity. This is called a fydfojection of connections and information
flows across these connections in one direction. Each ctioneadiso has a scalaveight
value associated with it. Each unit computesaativation value that is some function of
the activation values of the units connected to it, moddlatethe weight of the connection
between the units. This function is referred to as the uadts/ation function.

A connectionist network consists of multiple layers of smmibnnected by projections of
connection weights. One layer of units is typically calledput layer because it does not
receive a projection from any other layer. Therefore, thevaiions of the these units are
fixed to some set of values, known asiaput pattern, to begin processing. Activations are
computed in each successive layer until reachingtiygut layer which has no projections
to other layers. This layer then contains the network oufiputhe input pattern that was
provided to the input layer. If there are no cycles in procgs$érom the input to the
output layers, then the network is callederd-forward network. All other layers in a

feed-forward network are calldddden layers. Variouslearning algorithms exist for these
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connectionist models that adapt the connection weights towe, resulting in improved
model performance.

The connectionist framework is interesting because it carghly approximate the
processing done by the brain, if it is carefully designed dosd. However, connection-
ist models are not necessarily biologically realistic amalyrimclude extra computational
mechanisms to account for various psychological phenomEmase additions might play
an important scientific role if the actual underlying neuredchanisms are not well under-

stood.

ALCOVE Architecture

The ALCOVE (Kruschke, 1992) model of category learning ised-forward connec-
tionist model based on the GCM that involves three layersoégssing units as shown in
Figure 3. The input layer consists of a set of units that eactespond to a single dimen-
sion in the stimulus psychological space. MDS represantatof the stimuli are provided
as input patterns to this layer. Each input unit has its owmedisional attention weight,
These weights are non-negative scalar values that modhtamount of attention paid to
the corresponding stimulus dimension in the same manndreaSG€CM. Highera values
result in more attention being paid to the correspondingugtis dimension by increasing
the separation between stimuli along that dimension, nga#liacrimination easier along
that dimension. The opposite effect can be achieved witletovwalues, which reduce the
separation between stimuli along the dimension, makingridisnation of stimuli more
difficult along the dimension.

The hidden layer in ALCOVE contains a set of units that araraged in psychological
space, one for each trainirgemplar. Each of these exemplar units has a preferred level

on each stimulus dimension. The activation value of eactidridunit is determined by the
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Figure 3: The ALCOVE Architecture

following equation which is also the similarity computatiperformed by the GCM:

AT
) ] 1)

wherea!’® is the activation of hidden unit, ¢ is the specificity of the hidden uni; is

n
hji — a;

a?id = exp [—c (Z o
(3

the attention weight for input unit /;; is the preferred stimulus level of the hidden unit
along stimulus dimensioi a!" is the activation value of dimensionr is the psychological
distance metric, and is the similarity gradient. Hidden unit activity is at at a xiraum
when the inputs match the preferred stimulus input of the (iei, «!* matcheg:;;). This
activation fades exponentially as the stimulus becomesnd@tant from the preferred
exemplar in psychological space. The rate at which thisnfadiccurs is controlled by
the specificity parametet A largec value causes activation to drop off more quickly as
stimuli become more distant from the preferred exemplaeTdndq parameters define the
distance metric used to examine similarity between thespred stimulus and the current
stimulus being presented to the network. Wjtk= 1 andr = 2, the common Euclidean
distance metric is used. However, sometimes it is more @pjate to use a city-block

distance metricy = r = 1. It has been shown that the city-block metric creates abette
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fit to human data on categorization tasks involving stimuthvgeparable dimensions than
the Euclidean metric which produces better fits for integtimhuli (Nosofsky, 1987). The
differences between integral and separable stimuli williseussed later.

Finally the output layer contains a set of units receivingvation from the hidden
layer units viaassociation weights. Each output unit corresponds to a category to which an
input stimulus might be assigned. These units are stanotegar lunits with their activation

computed by the following equation:

ag = (wkja?id) (2)

j
wherea(" is the activation value of output uriit wy; is the value of the association weight
from unit j to unitk, anda}* is the activation value of hidden unjit

The activations of the output units are mapped onto resppradgabilities using an

exponential Luce choice rule:

P(K) = exp (¢at) /> exp (pag™) (3)
k

whereP(K) is the probability of responding that this stimulus beloimgsategoryk’, a9

is the activation value of output unkt and¢ is the gain term (this term is a free parameter
that is used to fit ALCOVE to human data.) These response piiities may be used to
compare network responses with human performance data.

After the presentation of each stimulus and the consequéptts are produced, the
output unit corresponding to the correct response is ptedemth a target activation level
of +1, and other units are presented with targets-of An error signal consisting of the
difference between?** and these targets is used to adjust weight values (thoughuut
units that “overshoot” their target values are assigned egmor).

There have been a number of connectionist algorithms tleatapable of adjusting

14



the weights of the network based on gradient-descent inargterror. A common bio-
logically plausible learning algorithm of this kind is tlaelta rule which has been used
in other connectionist models of category learning (Gluc# Bower, 1988; Gluck et al.,
1989). This algorithm was generalized to be used in mukilayetworks and is therefore
known as thegeneralized delta rule (Rumelhart et al., 1986a; Rumelhart et al., 1986b).
Both of these learning mechanisms are computationally folwsays to learn connection
weights. They adjust weights incrementally by a small amdw) based on network
error. However, the delta rule can only adjust connectiomsing into the output layer.
Therefore, the generalized delta rule must be used to aciustection weights deeper in
the network. The association weights are adjusted usisgthor signal directly (i.e., using
the delta rule), but the selective attention weights arasidf based on a backpropagated
error signal. The resulting weight update equations are:

Aw’ogt — )\w (tk o CLZUt) al}id (4)

J

Aa; = A, Z lz (tk _ azut) wj (5)

k

hid in
a;c fhji —a;

whereAw,?;t is the adjustment value for the association weight from émdahit; to output
unit £, Aq; is the adjustment value for the attention weight for input un\,, and\, are
the learning rate parameters for the association weightat@ention weights, respectively,
tr is the target value for output unit, and all other symbols have already been defined.
The learning rate parameters are part of the standard dddt@nd generalized delta rule
and they are often kept very smdll(1]) to encourage gradual weight changes. The only
constraintin applying these update equations is that ALE@étricts dimension attention
weights to be non-negative because negative attentiorhwasilp not represent anything of
psychological value.

The generalized delta rule (also known as the backprogaygafi error learning al-

gorithm or, more simply, backprop) (Rumelhart et al., 198Bamelhart et al., 1986b)
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changes weights in the network by adjusting values in a stmremental fashion to mini-
mize a formal network error function which is a function oéthetwork’s output. An error
function calledsum-sguared error is used by ALCOVE, just as it is in many other con-
nectionist architectures. The more the network’s respodgter from the target response
to the provided input stimulus, the greater the error. Aworevalue of zero represents a
perfectly correct response. The network error is “backagaped” from the output layer
by passing error information back across connections taiquie layers. The dimensional
attention weight update equation in ALCOVE incorporatés distant error information to
properly learn these weights.

ALCOVE's combines error-driven learning and the GCM’s neattfatical formalisms
into a powerful connectionist architecture, allowing ifitdhuman performance during cat-
egory learning quite well. It has been used to explain sekedimensional attention learn-
ing, how category structure effects learning speed, appaase-rate neglect phenomena,
and “three-stage learning” of rules and exceptions (Krkecth992). The hidden layer ar-
chitecture of ALCOVE also allows it to overcome the effectsatastrophic interference
that are often observed in other connectionist models ebcay learning (McCloskey and
Cohen, 1989).

Like many other connectionist architectures, ALCOVE makesassumptions about
the underlying neural mechanisms that are responsibleafegory learning in the brain.
It is, instead, simply a psychological model of categor@aperformance and category
learning. However, its success in describing categorylegmphenomena in a connection-
ist framework make it a promising approach to creating adgiclally plausible model of
category learning in the brain. It might be possible to maia@emental changes to this
architecture by replacing biologically implausible megisans with more feasible neural
mechanisms to gain some insights into how the brain migheb®pning categorization.

The goal of this work is to begin the process of making ALCOM&dpically plau-

sible through a change in ALCOVE’s mechanism for learningehsional attention. The
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ALCOVE model uses the backpropagation of error algorithradjust dimensional atten-
tion weights, but this algorithm has been criticized foraislogical implausibility (Crick,
1989; O’'Reilly, 1996). In brief, the backpropagation ofagrtearning algorithm requires
error signals to be sent backwards along the same weightetections that control the
flow of activity through the network. To the degree that wégghconnections are seen as
abstractions of the information processing that takesegpddeural synapses in the brain,
such a backward communication of error is impossible. Irbtian, such information can-
not be propagated back across synaptic connections. Bineréff the basic structure of
ALCOVE is correct, some other mechanism must be used by thie by update dimen-
sional attention. Thus, some other biologically plausiblechanism of learning needs to

be found that properly learns the dimensional attentiomgtsiin ALCOVE.

Temporal Difference Learning

Recent studies indicate that the firing rates of dopamineomsuin the basal ganglia
encode a signal abodbangesin expected futurereward (Shultz et al., 1997) that is globally
available throughout much of the brain. Schultz et.al. {)98ported single cell recordings
from a population of dopamine neurons in the substantiaarofjia monkey, taken during
a simple classical conditioning study. The results are shiowFigure 4. The top graph
represents the situation where a monkey is given a rewarch@l sip of juice). Notice
that the dopamine neurons fire above their baseline firirguat after this reward is given.
Therefore, we can easily see that these neurons are infllibgeewards. If a conditioning
stimulus (a tone or sound) is presented to the monkey shioefigre giving the reward,
and this is repeated for several trials, these neurons tbgim lbo fire for the conditioned
stimulus as shown in the graph on the left. However, they ddirgofor the actual reward.
Now, it would appear that these neurons have learned togtréai upcoming reward. In
other words, the monkey has learned to expect a reward aiecdnditioned stimulus.
Interestingly, if the conditioned stimulus is presenteat, then the reward is withheld as

in the graph on the right, the cells actually suppress beleir baseline firing rates. This
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Figure 4: Firing rates of a population of dopamine neurorteé@midbrain during classical
conditioning (Adapted from "A Neural Substrate of Prediatand Reward” by W. Schultz,
P. Dayan, & P. R. Montague, 199%ience, 275, pp.1593—-1599.)

indicates that the dopamine neurons are encoding for ceangexpected future reward.
They fire more strongly when the animal perceives a situatibare it expects to soon
be rewarded. However, they also fire less strongly when nangsvare provided at a
time that they are expected. This is interesting becauseasume of change in expected
reward is the key variable of a reinforcement learning mettalledtemporal difference
(TD) learning (Sutton, 1988). This realization has led a number of reseascto develop
models of the dopamine system using TD learning (Barto, 1®@htague et al., 1996).

In the TD framework, a continuous reward valug (s delivered on each time step
(t) with positive reward being desirable. A neural systemeththeadaptive critic learns
to predict expected future reward’) given features of the current situation, commonly
referred to as the currestate. The typical architecture of the adaptive critic is shown in
Figure 5 where; is the activation value of the output unjtV” is the value of the current

state,w;; is the connection weight for the connection from uib unit, and features
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Figure 5: A typical adaptive critic architecture

associated with the current state are encoded across ai afiput units (allj). Since the

idea is to learn to predict how rewarding a state is, ideaiywant the following to be true:

V(i) =r@t)+rt+1)+r(t+2)+...+r(t+n) (6)

This would make the our predictions of future rewabdat timet be the sum of all reward
we will receive as a result of being in our current state. Hmveve might look at rewards
that are received soon as being more important than rewecds/ed more distantly in the
future. (Thisis not always the case, but this method hasgatosliable for learning (Sutton,
1988).) We can discount future rewards by multiplying sujosat future rewards by a

factor~ which is betweer® andl. Thus, the prediction of reward changes to the following:

V(t) = A%r@) +y'r(t+ 1)+ r(t+2) + ...+ r(t+n) (7)

However, we don’t know these future reward values and, therecannot calculaté’.
However, it is not necessary to have all of these reward gatubegin making predictions.
One can instead use the prediction of reward for the nex,stdtere one ends up,(t+1),

in order to approximate our prediction of future rewardstfar current stat& (¢). Here is
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how this occurs: Since,

V() = @)+ rt+ 1)+ r(t+2) + ... +9"r(t+n) (8)

and

V(t+1) = r(t+ 1)+ r@E+2)+...+9" r(t+n) 9)

then it follows that:

V(t) = rt) ++4'V(E+1) (10)

This means that if our predictions bf are reliable, then we only need the reward received
at the current time step and our prediction for the next titep 0 accurately predict ex-
pected future rewards. It is up to the adaptive critic to agjpnate this function}’(¢), in
order to accurately predict changes in expected futurercb\ildoe critic needs to incremen-
tally adjust its predictions based on reward informati@mfreach time step in order learn
this approximation. In order to accomplish this, the criadculates a change in expected
future rewards:

b = (r@t)+9V(t+1)) V() (11)

Note that this difference is derived from the above equatigoverning expected future
rewards. In particulag is zero when the appropriate relationship holds betwiégn and
V(t + 1). Weights in the adaptive-critic network that participalethe computation of”

are then adjusted in the following manner:

Awij = )\td ) a; f'(neti) (12)

where Aw;; is the amount to change the weight leading from ynio unit:, A\, is the
learning rate, ang’(net;) is the derivative of the activation function of unitvaluated
at the net input for unit. Also note thatl” = a; whereq; is the activation value of unit

i. Thed term is called theaemporal difference (TD) error. This global error value can
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be used to drive learning in the adaptive critic, as showrheweight update equation
above, improving its ability to predict expected future aedd This error term can also
be used to drive learning in other neural systems that satdicins, driving these systems
to choose actions that regularly lead to reward. This is hemawrling is accomplished in
the actor-critic framework which has been used to explain motor sequence learning in the
striatum as well as other forms of learning (Barto et al.,@ $arto, 1994; O'Reilly et al.,
2002). The adaptive critic can be seen as computing whatledcdne value function in
the reinforcement learning literature while the actor catep what is known as thaolicy
function. While the value function is an estimate of the total expgdteure reward for
any state encountered, the policy function determines tiarathat proceeds to the next
state. However, the adaptive critic can be used to choogmaatvithout the aid of an actor
network by predicting rewards for all future states thatilefsom taking every action that
is available to the system and choosing to take the actidrig¢hds to the most rewarding
state (i.e. the state that has the highest estimate of tdgtakfreward.)

TD has been used extensively to learn sequences of ovarhactvhich are commonly
motor skills. However, in some models, TD has been used ttaexghe coordination
of covert cognitive activities like updating working memgarontents (Braver and Cohen,
2000; O'Reilly et al., 2002). These models are good exampildsow TD can control
covert cognitive activities through reinforcement leai The allocation of attention can
also be thought of as a covert cognitive function. Therefopropose that this form of
reinforcement learning may also be used to learn dimenkaitention weights that lead

to correct categorization responses and, thus, reward.
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CHAPTER IlI

METHODS

Conjunctive Coding

The attention weights in ALCOVE take on continuous valuaggfmesent varying levels
of attention for the various stimulus dimensions. Howewawst applications of temporal
difference learning focus on choosing from among a set afrelie actions, while there
is no clear understanding of how to apply these methods tcadmsmwhere continuous
output is needed (Sutton, 2001). Therefore, some modiicdat standard TD learning
is needed to apply these techniques to the problem of legadimensional attention. |
devised two novel connectionist architectures to accahphis. | chose to encode atten-
tional weight vectors (with one; weight per dimension) across a single layer of standard
connectionist processing units, called #ieention map layer. Each unit in this layer pos-
sesses a preferred attentional weight vector, and thea#iotivof a unit encourages the use
of that unit’s preferred dimensional attention weights e Hetivation level of each unit is
mainly determined by its individual bias weight. These mesghts are adapted using the
TD learning method to optimize reward. This very simpleg&rlayer network forms the
backbone of selective attention learning in my models.

At the start of each trial, each of the attention map units mates its activation value
based on its bias weight. The attention map units then canpetuch a way so as to
effectively select a vector of attention weight values tabed by ALCOVE. (This compe-
tition varies across models and is described below.) Wighnigw set of attention weights
in place, ALCOVE processes the current trial in the usudlitasand produces a catego-
rization judgment. In response to feedback, ALCOVE’s asdmmn weights are adjusted
in the usual manner using the delta rule. However, the adgist of the dimensional atten-

tion weights is handled differently. If ALCOVE confidentlyrcoses the correct category,
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it is rewarded. Otherwise, it is not. The TD erréycomputed as a function of this reward
signal is used to modify the bias weights of all active attanmap units. Over multiple tri-
als, the bias weights are strengthened for attention map whiose associated dimensional
attention weights regularly lead to reward.

Two different architectures for the attention map were stigated. The first of these
employedconjunctive coding, resulting in alocalist representation of dimensional atten-
tion. In this scheme, the preferred dimensional attentieigiit vectors of the attention
map units were distributed evenly throughout the attentierght vector space. Therefore,
each unit corresponded to a position in weight vector spadetlze attention map layer
consisted of a grid of units that spanned this space. On eathaetsimple winner-take-all
competition determined the single attention map unit wippeéerred weight vector would
specify dimensional attention for that trial. Learning oged only for the winning unit,

where the weight update equation for its bias weight was lasifs:

Aw; = N\ (r — a;) f'(net;) (13)

where Aw; is the weight adjustment for the bias weight for attentiorproait i, A, is
the attention map learning rate parameters the reward for the current triad,; is the
activation value of the winning attention map unix, @nd f'(net;) is the derivative of the
activation function (the standard logistic sigmoid). Tisishe standard TD weight update
equation under the condition absorbing rewards, where we do not predict reward past
the end of the current trial. In this case,acts as our reward predictioi’ (¢)), and we
do not predict beyond this trial, s9/ (¢t + 1) = 0, s0é = r — a;. A reward value ) of
+1 was delivered to the network on trials where ALCOVE seledtexicorrect category
label with a confident response. In other words, this rewaas gelivered when all output
unit activations were withi.5 of their respective targets. Otherwise, a reward ofas

delivered.
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Tile Coding

Our second attention map architecture emplayksdcoding, resulting in adistributed
representation of dimensional attention. Here the thesumithe attention map layer were
partitioned intotilings, where each disjoint tiling contained a set of units withfened
dimensional attention weight vectors that uniformly spethithe entire attention weight
space. However, the preferred dimensional attention veetere not identical because
each tiling was “offset” from the others as shown in Figureli®.order to precisely rep-
resent a position in attention weight space, exactly oneftorn each tiling needs to be
active and thailes surrounding the unit positions from each tiling need to ager This
kind of distributed representation was originally usedhia Cerebellar Model Articulation
Controller (CMAC) (Albus, 1975), and its use in other TD leiaig systems has been found
to result in improved generalization (Sutton, 1996). Jgsinahe conjunctive coding ar-
chitecture, each attention map unit is activated by a biaghwand a competition between
units ensues. However, in the tile coding scheme the mosteaait restricts activity in
other tilings. First, the most active unit across all of thieds in identified. Then, the
most active unit in each tiling whose corresponding tileraps with the first winning
unit’s tile remains active while the activity of the otheritsnn the tiling are suppressed.
This restriction is applied recursively to all tilings,@lNing only one active unit per tiling,
whose tile overlaps with all other active tiles. The attentiveight vector corresponding to
the center of this overlapping region is used by ALCOVE tocess the current stimulus.
Once feedback has been provided, reward is calculated &g iconhjunctive coding case,
and TD learning is used to adjust the bias weights of all ofthlmning (active) units in the
attention map layer.

In standard ALCOVE, the initial attention weights are ofter to all be equal and sum
to 1. This effectively emphasizes all dimensions equalyrfrthe start of training. We
selected initial bias weights in the attention map layergteo to form a similar initial bias

in our models. The unit in the attention map whose preferisgdsional attention vector
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Figure 6: Tile coding of the attention map layer — A singletusicentered in each tile

matched the initial vector used in standard ALCOVE was asgican initial bias weight
value of(0.05. Bias weights assigned to to the other units in the attentiap fell off in

a Gaussian fashion as distance from this position increagéda lower bound of-0.05.

A small amount of uniform noise was then added to each biaghweind the resulting
weights were clipped to remain in the0.05, 0.05] range. The variance of the Gaussian

and the range of the uniform noise were free parameters ahtiuel.
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CHAPTER IV

RESULTS

In order to verify that these reinforcement learning me@ras could indeed account
for the learning of dimensional attention and human peréoroe, the models were applied
to several category learning tasks previously studiedarctiiegory learning literature. The
performance of the models was compared to standard ALCOdElso ALCOVE without
attention learning. If the reinforcement learning mechkars can learn dimensional atten-
tion appropriately, then the new models should closely mtte performance of standard
ALCOVE. However, if the conjunctive and tile code modelsidéy from the performance
of standard ALCOVE, and behave in a manner similar to ALCOMtBaut attention learn-
ing, then we can say that the reinforcement mechanisms amgoducing appropriate di-
mensional attention weights. Tasks in which standard ALEGwd ALCOVE without
attention learning perform equally well show that dimensiocattention does not play a
significant role in these tasks. Thus, any degradation ifopaance on these tasks for
the conjunctive and tile code models indicates that thdasement learning mechanisms
are actually interfering with the learning of these taskke Tollowing experiments show
that the new models learn useful dimensional attention keig tasks that require dimen-
sional attention to match human performance, and they dintesfere with the learning
of tasks where dimensional attention does not aid perfocmaim summary, the models
can account for differences in learning speed as a functi@ategory structure, the util-
ity of dimensional attention when stimulus dimensions a&@asable, and the performance

consistency of dimensional attention when stimulus dinoerssare integral.

Dimensional Attention & Learning Difficulty

Shepard, Hovland, and Jenkins examined the effect of categucture on the rela-

tive speed with which a category structure is learned (Stdepiaal., 1961). Stimuli were
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composed of three easily separable binary dimensions,tfiabof eight possible stimuli.
Six category structures where examined as shown in FiguEach of the eight resulting
stimuli was assigned to one of two categories which are sgmted in the figure as either
a filled (black) corner or a blank (white) corner. The resigtstructures were then ordered
based the relative difficulty in learning the structures.e Tiype | category structure re-
quires only information about the first dimension (dim 1) nder to correctly categorize
the stimuli. Thus, it is the easiest to learn. However, theel¥ category structure requires
information about two dimensions (dim 1 and dim 2) to makerasm decision and should
be more difficult to learn. The remaining category strucduegjuire attention to all three
dimensions to make correct decisions, but certain dimessice more informative in some
cases (i.e., most of the stimuli for Type 4 can be classifisg@thgolely on information about
the third dimension (dim 3), but there are two “exceptiorstirequire attention to either
of the other two dimensions for their classification). Tlere, the remaining category
structures are ordered based on their relative dimensimagle across all dimensions.
The subjects in this study were trained on a stimulus setistimg of three separable,
binary dimensions: shape (triangle or square), size (largemall), and color (filled or
blank). The number of trials taken to reach categorizatrofigiency was recorded in each
task. The subjects learned the Type | category structuréaitest, the Type Il structure
next, and so on for all six structures. However, there wasangignificant difference in
the learning difficulty of Types Ill, IV, and V, which only ddr slightly (i.e. their rel-
ative dimensional usage across all dimensions is the saméehdir stimuli assignments
are slightly different). Shepard et.al. argued that catetgarning models based on rein-
forcement learning could not account for this learning omgthout incorporating some
mechanism for selective dimensional attention. Thereftims study provides a frame-
work for testing the biologically-plausible dimension#édesmtion learning mechanisms of
the conjunctive code and tile code models against ALCOVER&propagation mechanism

for learning dimensional attention.

27



i g

Type I Type II Type III

TRTe%]

Type IV Type V Type VI

? fT m2§2
3 T 1m
1 5, TL’ dim 1

Figure 7: Category structures used by Shepard et.al., {19bfom “Learning and Mem-
orization of Classifications” by R. N. Shepard, C. L. HovlagdH. M. Jenkins, 1961,
Psychological Monographs, 75, 13, Whole No. 517, p. 4. In the public domain.)
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Table 1: Parameter values for attention learning demadimtrausing the Six Type
data (Shepard et al., 1961).

Parameter Values

Parameter ALCOVE - Standard ALCOVE - NoLearning
Specificity 6.5 6.5
Association Weight Learning Rate 0.03 0.03
Attention Weight Learning Rate 0.0033 0.0

Luce Choice Gain 2.0 2.0

ALCOVE is clearly able to account for this learning orderaihgh its attention learning
mechanism, but not without it. Figure 8 shows how ALCOVE parfs on these category
structures involving binary stimuli when attention leaiis either enabled or disabled.
Standard ALCOVE is able to account for the proper learnimgpusing its attention learn-
ing mechanism. Also, Shepard et.al. could not find a sigmfidéference in the relative
learning difficulty for Types lll, IV, and V, and ALCOVE alsasplays this behavior, though
the type V difference is slightly more pronounced. (A diffiece was found in the empirical
study, but it was not statistically significant.) Howevertheut its dimensional attention
learning mechanism, ALCOVE fails to learn these tasks irpttoger order. (In particular,
the Type Il task is learned much too slowly.) Indeed, no matteat other parameter val-
ues are chosen, if the attention learning mechanism islédathe learning order remains
improper. The learning curves in Figure 8 were generatedgusnline learning and all
eight stimuli were seen in random order on each epoch (pedhwith parameter values
as shown in Table 1.

The challenge for the conjunctive code and tile code moddtsaccount for this learn-

ing difficulty as well as standard ALCOVE. Therefore, the ralsdvere applied to the Six

1This is a replication of a study from Kruschke (1992) excepséd online learning instead of batch
learning. In batch learning, weight updates that resulinftbe presentation of all eight stimuli are not
applied until all of the stimuli have been presented. eldnch consists of one complete pass through all of
the training patterns (stimuli). Therefore, in batch léagnweights are updated once per epoch. However,
in the online learning scheme, weights are updated aftér g#aulus presentation. ALCOVE typically uses
batch learning.
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Figure 8: Performance on Six Type category structures faCBVE with attention learn-
ing either enabled (left) or disabled (right).

Type categories for comparison. Since the stimuli were aseg of three dimensions,
the attention weight space was three-dimensional. Theuoatiye coding model used a
15 x 15 x 15 unit topology for its attention map layer (3375 units totathile the tile
coding model used five tilings & x 9 x 9 units each (3645 units total). Note that while
these two models contained a comparable number of unitgindtiention map layers, the
use of distributed representations in the tile coding cagk increased the precision with
which weight vectors could be specified and offers the premismproved generalization.
The results of these simulations are shown in Figure 9 anar€i$j0. Learning was done
online and all eight stimuli were seen in random order on egath. All parameters were
manually selected and are shown in Table 2.

The graphs in Figure 9 show a representative individual anrbbth the conjunctive
code and tile code models. Both models display the desiegdilgg traits, similar to stan-
dard ALCOVE. In particular, the Type Il structure is learrfagter than the Type IlI, IV, V,
and VI structures, but still slower than the Type | structurkis behavior is critical to the

validation of the conjunctive and tile coding approachelesoning dimensional attention.
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Figure 9: Performance on Six Type category structures fojurwtive and tile coding
models — results for an individual representative run
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Figure 10: Performance on Six Type category structuresdajunctive and tile coding
models — results averaged across 20 individual runs
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Table 2: Parameter values for conjunctive code and tile codéels using the Six Type
data (Shepard et al., 1961)

Parameter Values

Parameter Conjunctive Code Tile Code
Specificity 6.5 6.5
Association Weight Learning Rate 0.033 0.033
Reinforcement Learning Rate 0.001 0.001
Luce Choice Gain 2.0 2.0
Gaussian Variance 0.8 0.8
Uniform Noise Variance 0.008 0.01

If the models could not account for the empirical resultsfi®hepard et.al. then we would
know for sure that they were not performing attention leagréorrectly. Note, however,
that there are obvious differences in the conjunctive aledcbde models’ performance
compared to standard ALCOVE, even though they learn the temkectly. ALCOVE dis-
plays a smooth learning curve, indicative of the gradiesgegnt learning performed by
ALCOVE. The conjunctive code and tile code models do notldisthis smooth learning
phenomenon due to the stochastic nature of the winneratkeechanism combined with
TD learning that determines dimensional attention weifgrtthe models. This resultis in-
teresting because ALCOVE assumes that people update donahattention in a graded,
incremental fashion in order to solve category learninggasince the conjunctive code
and tile code models can account for the same performancg astochastic mechanism,
people might possibly be learning dimensional attentiahis stochastic fashion, instead.
Indeed, ALCOVE might be thought of as matching the averag®peance across a popu-
lation of individual subjects. This can be seen in compatireyesults in Figure 10 (where
the average learning curve from twenty individual runs afreenodel is shown) to the
standard ALCOVE learning curves from Figure 8. ALCOVE coedsily be fit to human
performance data from individual subjects, but it couldstaiw stochastic shifts in dimen-
sional attention and learning like the conjunctive andddde models. However, we do not

have empirical data for individual subjects to compare wilin models. Therefore, while
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we do not know how stochastic the empirical data really isCAIVE predicts it is smooth
while the conjunctive code and tile code models predictritose stochastic learning. This
would be an interesting result to examine empirically.

Even though the Six Type tasks provide a good framework fetirtg the qualitative
performance of the conjunctive code and tile code modets; lave several limitations
that need to be addressed. First, the stimuli in the taskisiaagy in each dimension (i.e.
they only take on one of two possible values for that dimem¥iblowever, the stimuli in
category learning tasks are often continuous in each diimen3hat is, they can take on
one of several possible values for each dimension. Sizelgange from small to medium
to large or color could range from blank (white) to grey tcefill(black.) It could be the case
that the reinforcement learning mechanisms employed bynthaels could fail to properly
learn dimensional attention for tasks involving continsi@timuli. Also, the empirical
data on the Six Type tasks only allows for an analysis of méhing speed for these
structures and does not provide a framework for analyziwg\well these models capture
human generalization performance. Finally, the Six Typé&danvolve separable stimuli,
where a change in the value of one dimension does not affeqtelception of the other
dimensions. If integral stimuli are used, where perceptibather dimensions is affected
by a change in any single dimension, the importance of dirnaakattention decreases to a
large degree. But itis important that category learning e®that incorporate dimensional
attention match human performance even when integral Btamauused — that dimensional
attention mechanisms do not hinder the ability of the motlt human performance.
Again, the conjunctive code and tile code models might aprtoperly learn dimensional
attention (possibly causing the models to fail to accounpérformance as well as standard
ALCOVE does), even though the weights are not as importathiscase.

In order to address these concerns, two more experimenesagaducted to examine
the performance of the conjunctive code and tile code maatelstimuli of these kinds.

Both experiments involve continuous stimuli to addresshimary limitation of the Six
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Type tasks. Also, both experiments involve fitting the medel actual human response
probabilities at arbitrary times during training. Finalbyne of the experiments uses stimuli

with separable dimensions and the other with integral dsiwars.

Categorization of Separable Dimensioned Stimuli

Nosofsky conducted a category learning study involvingpsti with separable dimen-
sions and then fit the GCM to the resulting human performaiate ith order to show the
effectiveness of the GCM (Nosofsky, 1986). The stimuli ¢stesl of two continuous di-
mensions: a semicircle inscribed with a radial line. The isgnles varied across four
radius lengths, and the radial lines varied across fouresnfgir a total of sixteen possi-
ble stimuli. The four different category structures in Figgl1l were designed using these
stimuli. For each category structure, eight of the stimuwrevexplicitly assigned to one of
two categories. These were the stimuli used in the trainlmggp of the study, while the
remaining eight were used to assess generalization. Sshjederwent an approximately
1,200 trial training phase on a category structure and thesa 3500 trial transfer phase
on the same structure. (During the transfer phase in thiyysteedback was provided for
stimuli that were explicitly assigned to a category.) Eaategory structure was learned by
the subjects in this manner. The response probabilitiealfaixteen stimuli were calcu-
lated based on the results from the transfer phases for edeyary structure. The GCM
was then fit to these response probabilities.

In order to assess the performance of the conjunctive coddil@ncode models on
these category learning tasks, a slightly different sgnafeom that used with the Six Type
data was taken. ALCOVE with attention learning and withdteration learning was fit to
the response probabilities in the transfer phase afteghieamed for a total of 1,200 trials
(as in Nosofsky’s study). The same was also done for the ootije code and tile code
models. A simple hill-climbing optimization algorithm mimizing the sum-squared error
between network generated response probabilities anduthje@ 1 response probabilities

was used to fit the free parameters of the models (4 for ALCQ¥ESted in Table 1, 6 for
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Separable Stimuli Category Structures  Angle vs. Radius

1 Dimensional 2 Criss-Cross
0.544cm| 2 2 |ossacem| 1 2
0.522 cm 212 0.522 cm 112
0.500 cm 1 1 0.500 cm 211
0.478 cm| 1 |0478em| 2 1
50° 53° 56° 59 50° 53° 56°  59°
3 Interior-Exterior 4 Diagonal
0.544 cm 2 0.544 cm ] 2
0.522 cm 1|12 [os22em| ] 2
0s00em| 2 | 1 | 1 0.500 cm 1 2
0.478 cm 2 0.478 cm 1|2
50° 53° 56°  59° 50° 53° 56° 59

1-Category 1 2 - Category 2

Figure 11: Category structures for the sixteen stimuli ve#iparable constituent dimen-
sions (Nosofsky, 1986)
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conjunctive code and tile code models as listed in Table23d&ch category structure. The
conjunctive code attention map layer was arrangedif a 15 unit topology (225 units
total), while the tile code model used 9 tilings®k 5 units (225 units total.) The stimuli
were presented to the models using the multidimensiondhgoaode found by Nosofsky.
The quality of the fits are summarized in Figure 12. The stahdd COVE model
provided the best overall fits to the data, but the conjurativde and tile code models
performed well at matching the subject response probesilits well. The only noticeable
difference in performance occurred using the tile code rmodeategory structure 3. This
is a very difficult category structure to learn and the tildeonodel does not even perform
as well as ALCOVE without attention learning. Thus, evenutjio the tile code model
has several computational benefits over the conjunctive omstlel, it does not account for
human performance as well. The dimensional attention weiglues that might actually
aid the model in solving this (relatively difficult) task nigbe represented in a very small
area of weight space. Thus, the tile code model’s genetaizenethod might actually be
hindering its performance because surrounding areas ghivepace, which fail to produce
reward, might make the area containing the appropriateegdlss likely to be discovered.
This could more than likely be overcome by using more unita tiling and fewer total
tilings. However, for category structures 1 and 2, the cociive code and tile code mod-
els show significant performance benefits over ALCOVE withaitention learning. The
conjunctive and tile code models do almost as good a job asGME It would be unrea-
sonable to expect them to do better since the gradient-desagning methods employed
by standard ALCOVE are extremely powerful. Instead, thd gbthese models is to per-
form almost as well as standard ALCOVE while using biolofiichased reinforcement
learning mechanisms. Overall, the models seem to accoutiufman performance and

learn adequate dimensional attention in tasks involvinginaous stimul?

2The GCM fits are from Nosofsky (1986). | provided fits for theetfour models.
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Fits to Nosofsky, 1986 - Variance Accounted For

100.00% —
‘6 95.00%
(1
e
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Y 85.00% 1 [JALCOVE
<t [] Conjunctive Code
§ 80.00% 4+ Il Tile Code
i)
_
S 75.00%
70.00% I T T T

1 2 3 4
Category Structure

Figure 12: Fits to human performance on category strucink@dving continuous, sepa-
rable stimuli

Categorization of Integral Dimensioned Stimuli

Nosofsky also conducted a category learning study invglgitimuli with integral di-
mensions and then fit the GCM to the resulting human perfocaaata in order to show
the effectiveness of the GCM in capturing human performanan when stimulus di-
mensions were not separable (Nosofsky, 1986). The stinonkisted of twelve colored
chips from the popular Munsell chip set manufactured by theng&ll Color Company.
The colors on these chips vary along two dimensions: sabaraind brightness. These
dimensions are continuous and any change in one dimengestsahuman perception of
the other dimensions. Twelve such chips were partitiontxsix different category struc-
tures as shown in Figure 13. Some or all of the stimuli werégassl to categories for
use in the training phase and all twelve stimuli were usethduhe transfer phase. Each

of the category structures were studied for a fixed numberia@ktas shown in Table 3.
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Integral Stimuli Category Structures  saturation (Chroma) vs. Brightness (value)

1 Criss-Cross 3 Diagonal 5 Pink-Brown
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Figure 13: Category structures for the twelve stimuli withegral constituent dimen-
sions (Nosofsky, 1987)

The responses of multiple subjects for all twelve stimuliidg the transfer phase were
aggregated to produce the response probabilities fit by Gl.G

The same fitting process explained earlier was used to fit ALEQhe conjunctive
code, and the tile code models to the response probabifiitied| twelve stimuli from the
transfer phase associated with each category structuree 8ie attention weight space was
two-dimensional, as in the separable stimuli study, thendéitth map layers were identical
to those used in the previous simulations. Also, the numbgaiming trials done by each
model before fitting the model to the data for each categoncsire was equal to those
used in the human study (shown in Table 3.) Again, the stimelie presented to the

models using the MDS code found by Nosofsky.
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Table 3: Training trials for integral stimuli category sttures

Category Structure Name Number of Training Trials
1 Criss-Cross 240
2 Saturation (A) 180
3 Diagonal 380
4 Brightness 490
5 Saturation (B) 400
6 Pink-Brown 400

The quality of the fits are summarized in Figure 14. The stah@CM model pro-
vided the best overall fits to the data, but ALCOVE, the coofiue code, and the tile code
models performed well at matching the subject responseapitifies as well. However, all
other models showed significantly poorer performance thai&iCM for category structure
3. This structure has roughly the same layout as the cat@ystryucture from the separable
stimuli study so, again, problem difficulty may be to blame. thhe GCM, the attention
weights are free parameters discovered by an extensivefiftiocess and it may just be
that this problem requires a strange combination of attentieight parameters that the
other models find difficult to learn. Again, the tile code misgl#ffers more than the others
which only strengthens this hypothesis. The standard ALE@wfor category structure 2
is excellent. The conjunctive code and tile code models déehbirn this task rather quickly
and so the rewards might not have been strong long enougtstotpe dimensional atten-
tion weights into the same area of attention weight spadeeagradient-descent learning of
ALCOVE. Even with the structure 3 learning limitation anaykkly worse fits on structure
2, the conjunctive code and tile code models fit the data nyughwell as ALCOVE and

do not fail to do so when integral stimuli are used.

3The GCM fits are from Nosofsky (1987). | provided fits for theatfour models.
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Fits to Nosofsky, 1987 - Variance Accounted For
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Figure 14: Fits to human performance on category strucink@dving continuous, sepa-
rable stimuli
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CHAPTER V

DISCUSSION & FUTURE WORK

The results show that established computational modekseditain’s dopamine system
can provide an adequate replacement for the biologicalptaosible backpropagation of
error method for adapting dimensional attention duringgegaty learning. The two new
models actually fit the human performance data quite welenBhhough ALCOVE gener-
ally performed the best of all of the models examined, the mmaels were able to learn
useful dimensional attention weights from their less-infative global reinforcement sig-
nal. The TD error signal is less-informative in that is doessupply the network with in-
formation about the direction in which the attention weightameters should be changed.
The backpropagation of error algorithm provides this digi@m-specific information when
updating attention weights (for example, the attentiorgiveior orientation needs to be in-
creased and the attention weight for size needs to be ded)ethsough adapting weights
based on gradient-descent in network error. However, thde@ihing algorithm has to
use the underlying architecture to discern how to changan weight values. Thus, it
strikes a balance between exploring new attention weighiegaand exploiting the atten-
tion weight values it has learned for producing rewardirgpomnses.

In contrast to ALCOVE, the mechanisms described here ashastic in nature. That
is, attention weights can sometimes change drastically iateempt to explore better at-
tention weight combinations while other times they may slage to a particular area of
weight space. This stochastic behavior comes from thealizsition methods described
above, where uniform random noise is injected into the biaighis of the attention learn-
ing networks. If a particular combination of values doesgwitrewarded over several tri-
als, the biases of the units encoding that combination megrhe low enough that another

unit on the other side of the space could become more highilyesand begin to win the
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winner-take-all competitions between attention map ufiitais, the attention learning pro-
duced by these TD learning mechanisms does not lend itsselb¥g incremental changes
in dimensional attention. Instead, these models are exfgedynamic, but still capable of
learning useful dimensional attention representatiortiefOmodels of categorization like
RULEX (Nosofsky et al., 1994) as well as other studies ingaitg learning (Rehder and
Hoffman, 2003) see the slow, incremental changes in dimeabattention as an artifact
of averaging data across multiple subjects. The modelepted here show how dimen-
sional attention that is highly stochastic can be leveramyegerly for good categorization
performance. If it is determined that the individual leasn@isplay rapid, stochastic shifts
in dimensional attention, the conjunctive code and tileecotbdels may provide a better
fit to individual performance than the necessarily smodiifting ALCOVE.

In all of the proposed TD models, individual attention majtsiencodeconjunctions
of attention weights — one weight value for each dimensionis Encoding strategy was
adopted for a good reason. It turns out that if attention esgpace is not represented in
this conjunctive fashion, then good attention weight valcen often get unduly penalized.
This occurs because dimensional attention weights do revatgindependently from one
another. Raising a single dimensional attention weigleaatiffely lowers the amount of
attention paid to all other dimensions as well as increaaitgntion for that dimension.
A disjunctive coding of attention weight space, where therdion weight parameters are
selected independently, does not capture this effect at$® a general failure to learn
when combined with TD learning. The conjunctive code overes this problem by not
penalizing the network for producing bad attention weighlues, but by penalizing bad
conjunctions of attention weight values. The opposite equence of rewarding the net-
work for choosing poor attention weight values occurs f@judictive encodings, as well,
and is overcome by the conjunctive code approach. Thesatadyes are achieved with the
tile code model which uses a distributed, conjunctive emgpdf attention weight values,

as well as the conjunctive code model which uses a locatisjuactive encoding.
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Disjunctive representations make TD learning extremelstaisie and some form of
conjunctive coding seems to be necessary for proper learrlihis is true in other rein-
forcement learning schemes as well (Sutton, 1996). Howéweiconjunctive code model
has one major drawback common to all localist conjunctiyeesentations. The number
of attention map units required to adequately cover thettte weight space grows expo-
nentially in the number of stimulus dimensions. This lintlie scalability of conjunctive
coding approaches in connectionist modeling. Also, cartjua coding results in a localist
representation of attention weight space. Therefore urmtive coding lacks the ability to
generalize without some additional mechanisms to aid mpghocess. Therefore, the tile
code attention map architecture was examined, since itmmtesuffer as much in terms of
scalability and also has the ability to generalize acrosgurctions of dimensional atten-
tion weights. Even though the number of units needed to ftdlyer the attention weight
space still increases exponentially with stimulus dimemnaility, the tile code model uses
significantly fewer units to achieve the same level of spaseretization. Also, the tiles
in the tile code model have overlapping receptive fields Wigicovide for generalization
between similar attention weight vectors. Thus, the tildeconodel has several clear com-
putational advantages over the conjunctive code model. edery the conjunctive code
model might still be the best representation for learningatisional attention even with
its apparent weaknesses. Other forms of distributed canldd be explored in the future.
The use ofCPCA Hebbian learning combined withk-winners-take-all inhibition has been
proposed as a biologically plausible method of learningspdistributed representations
in an unsupervised or self-organizing fashion (O’Reillfdaiunakata, 2000), where no
target signal is needed to learn these representationer tims of unsupervised learning
that use winner-take-all inhibition like the models exgldhere could also be investigated,
like competitive learning (Rumelhart and Zipser, 1986) ah&nen learning (Kohonen,
1984).

The use of conjunctive coding to learn the continuous datienweight parameters in
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ALCOVE has other implications in the general reinforcemieatning domain. There is
no clear understanding of how to apply reinforcement lewymethods to learning contin-
uous parameters, but this work provides a plausible frameimavhich to accomplish this
type of learning. The conjunctive coding approaches explan this work overcome the
limitations of disjunctive coding in a biologically plaleé manner and the unsupervised
methods mentioned earlier for learning sparse, distribuépresentations might also be
incorporated into the framework used here. Thus, futureane in applying the methods
explored here to more general reinforcement learning problthat involve continuous
parameters is promising.

The way in which reward was provided to the new models alsgspdacritical role in
successfully learning dimensional attention. The cumendiels employ a reward schedule
where reward is given to the network for correct, confideapomses as described earlier.
This is in contrast to the more obvious reward strategy aftstetically making category
judgments based oR(K') and rewarding any correct judgment. The reward scheme that
was used here was motivated by the “three-stage learnimgileoexhibited by ALCOVE.

In ALCOVE, the association weights are all initialized to@and the backpropagated error
signal is multiplied by these weights before it influencesehsional attention learning.
Thus, the dimensional attention weights do not change muaththe network has begun
to generate strong responses. This initial conservatigmnegard to attention weights is
not exhibited if reward is delivered for correct responsé Wow confidence during the
early parts of training. Initial attempts at using a rewasldesne based only on correctness
caused network behavior to deviate substantially fromostehALCOVE. So, even though
the simpler reward schedule makes more sense intuitiveause it is more indicative
of the actual reward from the environment that subjectsivecen a trial by trial basis,
it seems that some other neural mechanism may be influentoingftective reward that
drives learning. Biological and computational mechanisinaé could be responsible for

this effect are currently being investigated.
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Eventually | hope to modify ALCOVE to make use of additionadlbgically plausible
mechanisms of neural computation. This work representirtatep in this process, iden-
tifying a biologically realistic method for governing dimsonal attention. In particular,
the modeling of ALCOVE’s exemplar layer in terms of the urigieg neural mechanisms
that the brain could be employing to account for distance/beh exemplars in psycholog-

ical similarity space is an enticing area of future research
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